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Graph related Linear Algebra

a

b c

d

1

1.5

2

0.5

G = (V, E ,w)

a b c d


a 0 1 2 0.5
b 1 0 1.5 0
c 2 1.5 0 0
d 0.5 0 0 0

Adjacency matrix W


3.5 0 0 0
0 2.5 0 0
0 0 3.5 0
0 0 0 0.5


Degree matrix D


3.5 -1 -2 -0.5
-1 2.5 -1.5 0
-2 -1.5 3.5 0
-0.5 0 0 0.5


Laplacian matrix

L = D−W
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The Graph Laplacian is Ubiquitous...

Theory
• Connectivity Analysis
• Graph Partitioning
• Spanning Trees
• Random Walks (Loop-Erased)...

Applications
• Graph Signal Processing
• Machine learning
• Visualization
• Sparsification
• Robustness analysis...

" However, some computations do not scale with large graphs.
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Graph Signal Smoothing

Original Signal: y:

x̂:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||22︸ ︷︷ ︸
Fidelity

+ xTLx︸︷︷︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i,j)∈E
w(i, j)(xi − xj)2.
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Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).
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Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi

tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?
• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).
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Randomized Linear Algebra

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

Sample
f



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Main Theme

• RLA algorithms for Laplacian-based numerical algebra by using Random
Spanning Forests.

Sample f



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Outline

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion
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Spanning Forests

Graph

Spanning Tree Rooted
Spanning Tree

Rooted
Spanning Forest
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Forest Notations

• Given a graph G = (V, E ,w), we denote:

j

i

• a spanning forest by φ and

its root set by ρ(φ),
• the root of vertex i in φ by rφ(i) = j.
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Random Spanning Forests: What, Why and How?

• Random spanning forests is the process of selecting a forest at random over
all possible ones.

Definition (RSF)
A random spanning forest Φq on a graph G is spanning forest selected over all
spanning forests of G according to the following distribution:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i,j)∈Eφ

w(i, j)

• q > 0 changes the expected number of roots.
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Random Spanning Forests: What, Why and How?

• The random roots ρ(Φq) is a determinantal point process with a marginal
kernel K = q(L+ qI)−1 (Avena et al. 2018):

∀S ⊆ V, P(S ⊆ ρ(Φq)) = det KS.

• Moreover, we have the following identity (Avena et al. 2018):

∀i, j ∈ V, P(rΦq(i) = j) = Ki,j.

• There is an efficient algorithm to sample RSFs, called Wilson’s
algorithm (Wilson 1996).
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Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.
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Outline
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Main Contributions

Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances

Original Signal: y:

x̂ = Ky:
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Smoothing Via Forests

Sample
a forest

Average&
Propagate

• Random partitions are sampled via random spanning forests.
• This yields an unbiased estimator x̄.
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Comparison with State of the art

• We compare the algorithms in approximation error (error respect to x̂) and
reconstruction error (error respect to x)

x x̂ = Ky

App.
ErrorRec. Error
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Comparison with State of the art
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Gradient Descent Update as Control Variate

• The approximation error can be improved by variance reduction.

• The solution x̂ also minimizes:

F(x) = 1
2
x>K−1x− x>y.

• The gradient descent algorithm draws the following iteration scheme:

xk+1 = xk − α∇F(xk)

where α ∈ R and ∇F(xk) = K−1xk − y.
• We propose to apply the gradient descent update on the previous estimator
x̄:

z̄ := x̄− α(K−1x̄− y)
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Properties of this estimator

• z̄ is unbiased.

• A matrix-vector product with L is needed only once.
• For certain values of α, we have improved performance.
• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax ) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.
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Range of α

• We empirically compare these options of α over a regular and irregular graph:
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An Illustration

x: y: x̂:

x̄, N=1: z̄, N=1:
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An Illustration

10 1 100 101

q

1.4 × 101

1.6 × 101

1.8 × 101

2 × 101

2.2 × 101

2.4 × 101

PS
NR

PSNR vs q

x
x
Noisy signal
z
z with 

Figure 7: PSNR vs q, N=2 27/44



Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances
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Inverse Trace Estimation: Hutchinson’s Estimator

• A famous algorithm for estimating tr(K) is Hutchinson’s estimator:

h :=
1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a(i)j = ±1) = 1/2.

• It is an unbiased estimator of tr(K).
• The cumbersome computation here is Ka(i) for N vectors.
• It can be done via:

• Direct computation via Cholesky decomposition
• (Preconditioned) Iterative solvers
• Algebraic Multigrid solvers
• ...
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Forest based Trace Estimator

• Another unbiased estimator is by RSFs (Barthelme et al. 2019):

s := |ρ(Φq)| with E[s] = tr(K)

• This estimator gives an comparable performance with the existing algorithms.
• One can use this estimator in case of symmetric diagonally dominant
matrices instead of the graph Laplacians.
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Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.
• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.
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Variance Reduction via Stratification

• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.
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Variance Reduction via Stratification

• Y = |ρ1(Φq)| as the number of the roots that are sampled at the first visit.
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Comparison with Hutchinson’s Estimator

• We compare the time needed by the estimators for reaching a certain
accuracy.
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Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances
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Effective Resistances: What, Why and How?

Definition (Electrical Representation)
In the electrical representation of a graph G = (V, E ,w), each edge is a
resistor with a resistance 1

w(i,j) .

• The effective resistance between node i and j:

Ri,j := L†
i,i + L†

j,j − L†
i,j − L†

j,i

• The effective conductance:
Ii,j :=

1
Ri,j
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Effective Resistances: What, Why and How ?

• Ri,j is a distance metric between i and j.

• They are of central importance in many graph related applications:
• Clustering (Alev et al. 2017),
• Sparsification (Spielman and Srivastava 2011),
• Learning (Ghosh et al. 2008),
• Network robustness (Wang et al. 2014).

• In large scale, they are expensive to compute.
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Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.

• They can be divided into two groups:
• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.
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Estimating Ri,j via Local Forests (LF)

ij

Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.
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Experiments

• We report the run-time of the local algorithms for approximately the same
relative error.

XXXXXXXXXXXXXDataset
Algorithm TP MC2 LF(ours)

Cora 116 11 2
Citeseer 362 6 1
Pubmed 333 91 12
Collab-CM 82 156 20

Table 1: Runtime (ms) of the local algorithms over benchmark datasets
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Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.

• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.
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Limitations and Open Questions

Limitations

• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions

• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?
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Random Spanning Forests

• For fixed subsets V ⊆ V and S ⊆ E with |V| = |S|, one has:

detBS|V =


(∏

(i,j)∈S w(i, j)
)1/2

, if S forms a spanning forest rooted in V

0, otherwise.

• We can count the spanning forests rooted in R ⊆ V :

∀R ⊆ V, det L−R =
∑

φ∈FR

∏
(i,j)∈Eφ

w(i, j).

• The root probability can be seen as a ratio of counts:

P(rΦq(i) = j) = Ki,j = q
(−1)i+j det(L+ qI)−i|−j

det (L+ qI)
=

|F i→j|
|F|



Loop-Erased Random Walks

Theorem (Law of LERWs (Marchal 2000))
A loop-erased random walk LE(W) on G = (V, E ,w) that is stopped at the
boundary ∆ ⊂ V has the following probability distribution:

P(LE(W) = γ) =
det L−∆∪s(γ)
det L−∆

∏
(i,j)∈γ

w(i, j)

where γ is a fixed path and s(γ) denotes the nodes visited in γ.



Graph Filtering via Duplicated Graph

• The product Ky corresponds to a graph filtering with the transfer function:

gq(λ) =
q

q+ λ

• We duplicate the graph and the input yd =
[
αy
βy

] A
B

C
D

A’ B’

C’ D’

• The transfer function is paramerized by θ = (q1,q2, α, β):

fθ(λ) =
αq1(λ + h(0) + q2) + βq2(h(λ))

(λ + h(0) + q1)(λ + h(0) + q2) − h(λ)2
,



L1 Graph Regularization

• Another type of regularization is L1 regularization:

x? = argmin
x∈Rn

q
2

||x− y||22 + ||Bx||1

• Alternating direction of multipliers (ADMM) approximates x? by:

xk+1 = argmin
x∈Rn

(q
2

||x− y||22 +
ρ

2
||Bx− zk + uk||22

)
zk+1 = argmin

z∈Rm

(
||z||1 +

ρ

2
||Bxk+1 − z+ uk||22

)
uk+1 = uk + (Bxk+1 − zk+1).



Extension to SDDs

• Let G = U>ΛU = A(p) + A(n) + D(1) + D(2) be an symmetric diagonally
dominant matrix where D(1)

i,i =
∑
i6=j Gi,j and D

(2)
i,i = Gi,i − D(1)

i,i .
• Construct the graph Laplacians:

L1 = D(1) + A(n) − A(p)/2 = U>
1 Λ1U1

L2 =
[
D(1) + A(n) + D(2)/2 −D(2)/2− A(p)

−D(2)/2− A(p) D(1) + A(n) + D(2)/2

]

• The eigenvectors of L2 are U2 =
[
U U1

−U U1

]
• The eigenvalues of L2 are λ2 = λ1 ∪ λ



Cross-Validation for GTR

• The leave-one-out cross-validation for graph Tikhonov regularization boils
down to:

LOOCV(q) = 1
n

 n∑
i=1

yi − x̂i
1− Ki,i

2

.

• The generalized CV approximation is:

GCV(q) = 1
N

 n∑
i=1

yi − x̂i
1− (tr(K)/n)

2

.
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