Wilson's Algorithm for Randomized Linear Algebra

Yusuf Yiğit Pilavcı

Advisors: Pierre-Olivier Amblard Simon Barthelmé Nicolas Tremblay

WHAT'S INSIDE?

Road Networks

Point Clouds Networks

Molecule Networks

Point Clouds Networks

Tonnetz

Molecule Networks

 $\mathcal{G} = (\textcolor{red}{\mathcal{V}}, \textcolor{red}{\mathcal{E}}, \textcolor{black}{\mathsf{W}})$

Adjacency matrix W

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathsf{W})$

Adjacency matrix W

Degree matrix D

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathsf{W})$

Degree matrix D

Laplacian matrix

$$L = D - W$$

Theory

- · Connectivity Analysis
- Graph Partitioning
- Spanning Trees
- · Random Walks (Loop-Erased)...

Theory

- Connectivity Analysis
- Graph Partitioning
- · Spanning Trees
- · Random Walks (Loop-Erased)...

Applications

- Graph Signal Processing
- · Machine learning
- Visualization
- Sparsification
- Robustness analysis...

Theory

- Connectivity Analysis
- Graph Partitioning
- Spanning Trees
- · Random Walks (Loop-Erased)...

Applications

- · Graph Signal Processing
- Machine learning
- Visualization
- Sparsification
- Robustness analysis...

Original Signal:

y:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$$
,
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} q \underbrace{||\mathbf{y} - \mathbf{x}||_2^2}_{\text{Fidelity}} + \underbrace{\mathbf{x}^T L \mathbf{x}}_{\text{Regularization}}, \quad q > 0$$

where L is the graph Laplacian and $\textbf{x}^T L \textbf{x} = \sum\limits_{(i,j) \in \mathcal{E}} w(i,j) (x_i - x_j)^2.$

$$\hat{\mathbf{x}} = K\mathbf{y}$$
 with $K = q(L + qI)^{-1}$

• The explicit solution to this problem is:

$$\hat{\mathbf{x}} = K\mathbf{y}$$
 with $K = q(L + qI)^{-1}$

 Besides smoothing, this solution plays a role as building block in solving many other graph related-problems.

$$\hat{\mathbf{x}} = K\mathbf{y}$$
 with $K = q(L + qI)^{-1}$

- Besides smoothing, this solution plays a role as building block in solving many other graph related-problems.
- Direct computation of K requires $\mathcal{O}(n^3)$ elementary operations due to the inverse.

$$\hat{\mathbf{x}} = K\mathbf{y}$$
 with $K = q(L + qI)^{-1}$

- Besides smoothing, this solution plays a role as building block in solving many other graph related-problems.
- Direct computation of K requires $\mathcal{O}(n^3)$ elementary operations due to the inverse.
- For large n, iterative methods and polynomial approximations are state-of-the-art.

$$\hat{\mathbf{x}} = K\mathbf{y}$$
 with $K = q(L + qI)^{-1}$

- Besides smoothing, this solution plays a role as building block in solving many other graph related-problems.
- Direct computation of K requires $\mathcal{O}(n^3)$ elementary operations due to the inverse.
- For large n, iterative methods and polynomial approximations are state-of-the-art.
- For SDD linear systems, there is a growing body of works starting from (Spielman and Teng 2004).

• Trace is an essential operation:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \delta_{i}^{\top} A \delta_{i}$$

· Trace is an essential operation:

$$\mathrm{tr}(A) = \sum_{i=1}^n \delta_i^{\top} A \delta_i$$

$$\operatorname{tr}(A^{-1}) = \sum_{i=1}^{n} \delta_{i}^{\top} A^{-1} \delta_{i}$$

• Trace is an essential operation:

$$\mathrm{tr}(A) = \sum_{i=1}^n \delta_i^{\top} A \delta_i$$

$$\operatorname{tr}(A^{-1}) = \sum_{i=1}^{n} \delta_{i}^{\top} A^{-1} \delta_{i}$$

· How to choose a good value for the hyperparameter q?

• Trace is an essential operation:

$$\mathrm{tr}(A) = \sum_{i=1}^n \delta_i^{\top} A \delta_i$$

$$\operatorname{tr}(A^{-1}) = \sum_{i=1}^{n} \delta_{i}^{\top} A^{-1} \delta_{i}$$

- · How to choose a good value for the hyperparameter q?
- There are several methods such as Akaike's or Bayesian information criterion, generalized cross validation or Stein's unbiased risk estimator.

· Trace is an essential operation:

$$\mathrm{tr}(A) = \sum_{i=1}^n \delta_i^{\top} A \delta_i$$

$$\operatorname{tr}(A^{-1}) = \sum_{i=1}^{n} \delta_{i}^{\top} A^{-1} \delta_{i}$$

- How to choose a good value for the hyperparameter q?
- There are several methods such as Akaike's or Bayesian information criterion, generalized cross validation or Stein's unbiased risk estimator.
- \cdot Each uses a quantity called the effective degree of freedom which is equal to $\mathrm{tr}(K)$.

RANDOMIZED LINEAR ALGEBRA

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

RANDOMIZED LINEAR ALGEBRA

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

RANDOMIZED LINEAR ALGEBRA

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

MAIN THEME

 RLA algorithms for Laplacian-based numerical algebra by using Random Spanning Forests.

OUTLINE

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

OUTLINE

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

FOREST NOTATIONS

• Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, we denote:

- a spanning forest by ϕ and

FOREST NOTATIONS

• Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, we denote:

- a spanning forest by ϕ and its root set by $\rho(\phi)$,

FOREST NOTATIONS

• Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, we denote:

- a spanning forest by ϕ and its root set by $\rho(\phi)$,
- the root of vertex i in ϕ by $r_{\phi}(i) = j$.

 Random spanning forests is the process of selecting a forest at random over all possible ones.

 Random spanning forests is the process of selecting a forest at random over all possible ones.

Definition (RSF)

A random spanning forest Φ_q on a graph $\mathcal G$ is spanning forest selected over all spanning forests of $\mathcal G$ according to the following distribution:

$$P(\Phi_{\mathbf{q}} = \phi) \propto \mathbf{q}^{|\rho(\phi)|} \prod_{(\mathbf{i}, \mathbf{j}) \in \mathcal{E}_{\phi}} \mathbf{w}(\mathbf{i}, \mathbf{j})$$

 Random spanning forests is the process of selecting a forest at random over all possible ones.

Definition (RSF)

A random spanning forest Φ_q on a graph $\mathcal G$ is spanning forest selected over all spanning forests of $\mathcal G$ according to the following distribution:

$$P(\Phi_{\mathbf{q}} = \phi) \propto \mathbf{q}^{|\rho(\phi)|} \prod_{(\mathbf{i}, \mathbf{j}) \in \mathcal{E}_{\phi}} \mathbf{w}(\mathbf{i}, \mathbf{j})$$

 \cdot q > 0 changes the expected number of roots.

• The random roots $\rho(\Phi_q)$ is a determinantal point process with a marginal kernel $K=q(L+qI)^{-1}$ (Avena et al. 2018):

$$\forall S \subseteq \mathcal{V}, \quad \mathbb{P}(S \subseteq \rho(\Phi_q)) = \det K_S.$$

• The random roots $\rho(\Phi_q)$ is a determinantal point process with a marginal kernel $K = q(L+qI)^{-1}$ (Avena et al. 2018):

$$\forall S \subseteq V$$
, $\mathbb{P}(S \subseteq \rho(\Phi_q)) = \det K_S$.

· Moreover, we have the following identity (Avena et al. 2018):

$$\forall i,j \in \mathcal{V}, \quad \mathbb{P}(r_{\Phi_q}(i) = j) = K_{i,j}.$$

• The random roots $\rho(\Phi_q)$ is a determinantal point process with a marginal kernel $K = q(L+qI)^{-1}$ (Avena et al. 2018):

$$\forall S \subseteq V$$
, $\mathbb{P}(S \subseteq \rho(\Phi_q)) = \det K_S$.

· Moreover, we have the following identity (Avena et al. 2018):

$$\forall i,j \in \mathcal{V}, \quad \mathbb{P}(r_{\Phi_q}(i) = j) = K_{i,j}.$$

• There is an efficient algorithm to sample RSFs, called Wilson's algorithm (Wilson 1996).

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - take a step from i to j with probability $\frac{W(i,j)}{q+d_i}$,
 - · interrupt at any node i with a probability $\frac{q}{q+d_i}$.

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- Consider an simple random walk on \mathcal{G} with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- Consider an simple random walk on \mathcal{G} with the transition rule:
 - take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- Consider an simple random walk on \mathcal{G} with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}$.

- Consider an simple random walk on \mathcal{G} with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}$.

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}$.

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - · take a step from i to j with probability $\frac{w(i,j)}{q+d_i},$
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - take a step from i to j with probability $\frac{w(i,j)}{q+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}.$

- \cdot Consider an simple random walk on $\mathcal G$ with the transition rule:
 - take a step from i to j with probability $\frac{w(i,j)}{a+d_i}$,
 - interrupt at any node i with a probability $\frac{q}{q+d_i}$.

• The expected number of steps is known:

$$\operatorname{tr}\left[(L+qI)^{-1}(D+qI)\right] \leq \frac{2|\mathcal{E}|}{q} + |\mathcal{V}|.$$

OUTLINE

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

MAIN CONTRIBUTIONS

Challenges

- Graph Signal Smoothing
- · Trace Estimation
- Estimating Effective Resistances

MAIN CONTRIBUTIONS

Challenges

 Graph Signal Smoothing Original Signal:

y:

$$\hat{\textbf{x}} = \textbf{K}\textbf{y} :$$

SMOOTHING VIA FORESTS

SMOOTHING VIA FORESTS

· Random partitions are sampled via random spanning forests.

SMOOTHING VIA FORESTS

- · Random partitions are sampled via random spanning forests.
- · This yields an unbiased estimator $\bar{\mathbf{x}}$.

COMPARISON WITH STATE OF THE ART

- We compare the algorithms in approximation error (error respect to \hat{x}) and reconstruction error (error respect to x)

COMPARISON WITH STATE OF THE ART

• We compare the algorithms in approximation error (error respect to \hat{x}) and reconstruction error (error respect to x)

COMPARISON WITH STATE OF THE ART

 \cdot The approximation error can be improved by variance reduction.

- The approximation error can be improved by variance reduction.
- The solution $\hat{\mathbf{x}}$ also minimizes:

$$F(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} K^{-1} \mathbf{x} - \mathbf{x}^{\top} \mathbf{y}.$$

- The approximation error can be improved by variance reduction.
- The solution $\hat{\mathbf{x}}$ also minimizes:

$$F(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} K^{-1} \mathbf{x} - \mathbf{x}^{\top} \mathbf{y}.$$

• The gradient descent algorithm draws the following iteration scheme:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla F(\mathbf{x}_k)$$

where
$$\alpha \in \mathbb{R}$$
 and $\nabla F(\mathbf{x}_k) = K^{-1}\mathbf{x}_k - \mathbf{y}$.

- The approximation error can be improved by variance reduction.
- The solution $\hat{\mathbf{x}}$ also minimizes:

$$F(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} K^{-1} \mathbf{x} - \mathbf{x}^{\top} \mathbf{y}.$$

• The gradient descent algorithm draws the following iteration scheme:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla F(\mathbf{x}_k)$$

where $\alpha \in \mathbb{R}$ and $\nabla F(\mathbf{x}_k) = K^{-1}\mathbf{x}_k - \mathbf{y}$.

• We propose to apply the gradient descent update on the previous estimator $\bar{\mathbf{x}}$:

$$\bar{\mathbf{z}} \coloneqq \bar{\mathbf{x}} - \alpha(\mathbf{K}^{-1}\bar{\mathbf{x}} - \mathbf{y})$$

• \bar{z} is unbiased.

- \bar{z} is unbiased.
- · A matrix-vector product with L is needed only once.

- $\cdot \bar{z}$ is unbiased.
- \cdot A matrix-vector product with L is needed only once.
- \cdot For certain values of α , we have improved performance.

- $\cdot \bar{z}$ is unbiased.
- · A matrix-vector product with L is needed only once.
- For certain values of α , we have improved performance.
- The optimal value is:

$$\alpha^{\star} = \frac{\operatorname{tr}(\operatorname{Cov}(\mathsf{K}^{-1}\bar{\mathbf{x}},\bar{\mathbf{x}}))}{\operatorname{tr}(\operatorname{Var}(\mathsf{K}^{-1}\bar{\mathbf{x}}))}.$$

- $\cdot \bar{z}$ is unbiased.
- · A matrix-vector product with L is needed only once.
- For certain values of α , we have improved performance.
- The optimal value is:

$$\alpha^{\star} = \frac{\operatorname{tr}(\operatorname{Cov}(\mathsf{K}^{-1}\bar{\mathbf{x}},\bar{\mathbf{x}}))}{\operatorname{tr}(\operatorname{Var}(\mathsf{K}^{-1}\bar{\mathbf{x}}))}.$$

• One can either choose a value for α from the safe range (e.g. $\alpha = \frac{2q}{q+2d_{max}}$) or estimate from the samples:

$$\hat{\alpha} = \frac{\operatorname{tr}(\widehat{\operatorname{Cov}}(\mathsf{K}^{-1}\bar{\mathbf{x}},\bar{\mathbf{x}}))}{\operatorname{tr}(\widehat{\operatorname{Var}}(\mathsf{K}^{-1}\bar{\mathbf{x}}))}.$$

Range of α

• We empirically compare these options of α over a regular and irregular graph:

AN ILLUSTRATION

AN ILLUSTRATION

AN ILLUSTRATION

Figure 7: PSNR vs q, N=2

CHALLENGES

- · Graph Signal Smoothing
- · Trace Estimation
- Estimating Effective Resistances

- A famous algorithm for estimating $\operatorname{tr}(K)$ is Hutchinson's estimator:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} K \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_j^{(i)} = \pm 1) = 1/2$.

- A famous algorithm for estimating $\operatorname{tr}(K)$ is Hutchinson's estimator:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} K \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1, 1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)} = \pm 1) = 1/2$.

· It is an unbiased estimator of $\mathrm{tr}(K).$

- A famous algorithm for estimating $\operatorname{tr}(K)$ is Hutchinson's estimator:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} K \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1, 1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)} = \pm 1) = 1/2$.

- It is an unbiased estimator of tr(K).
- The cumbersome computation here is $Ka^{(i)}$ for N vectors.

- A famous algorithm for estimating $\operatorname{tr}(K)$ is Hutchinson's estimator:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} K \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1, 1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)} = \pm 1) = 1/2$.

- It is an unbiased estimator of tr(K).
- \cdot The cumbersome computation here is $Ka^{(i)}$ for N vectors.
- It can be done via:
 - · Direct computation via Cholesky decomposition
 - · (Preconditioned) Iterative solvers
 - · Algebraic Multigrid solvers
 - ...

FOREST BASED TRACE ESTIMATOR

· Another unbiased estimator is by RSFs (Barthelme et al. 2019):

$$\mathsf{s}\coloneqq |
ho(\Phi_\mathsf{q})| \text{ with } \mathbb{E}[\mathsf{s}]=\mathrm{tr}(\mathsf{K})$$

FOREST BASED TRACE ESTIMATOR

· Another unbiased estimator is by RSFs (Barthelme et al. 2019):

$$\mathsf{s}\coloneqq |
ho(\Phi_\mathsf{q})|$$
 with $\mathbb{E}[\mathsf{s}]=\mathrm{tr}(\mathsf{K})$

 $\boldsymbol{\cdot}$ This estimator gives an comparable performance with the existing algorithms.

FOREST BASED TRACE ESTIMATOR

· Another unbiased estimator is by RSFs (Barthelme et al. 2019):

$$\mathsf{s}\coloneqq |
ho(\Phi_\mathsf{q})| \text{ with } \mathbb{E}[\mathsf{s}]=\mathrm{tr}(\mathsf{K})$$

- This estimator gives an comparable performance with the existing algorithms.
- One can use this estimator in case of symmetric diagonally dominant matrices instead of the graph Laplacians.

• One can rewrite $\bar{\mathbf{x}} = \bar{\mathsf{S}}\mathbf{y}$.

- One can rewrite $\bar{\mathbf{x}} = \bar{\mathsf{S}}\mathbf{y}$.
- The control variate estimator for K:

$$\bar{Z} = \bar{S} - \alpha (K^{-1}\bar{S} - I).$$

- One can rewrite $\bar{\mathbf{x}} = \bar{\mathsf{S}}\mathbf{y}$.
- The control variate estimator for K:

$$\bar{Z} = \bar{S} - \alpha (K^{-1}\bar{S} - I).$$

· We define the new trace estimator as

$$\bar{s} \coloneqq \operatorname{tr}(\bar{Z}).$$

Variance Reduction via Control Variates

- One can rewrite $\bar{\mathbf{x}} = \bar{\mathbf{S}}\mathbf{y}$.
- The control variate estimator for K:

$$\bar{Z} = \bar{S} - \alpha (K^{-1}\bar{S} - I).$$

· We define the new trace estimator as

$$\bar{s} \coloneqq \operatorname{tr}(\bar{Z}).$$

• A safe value of α is $\frac{2q}{q+2d_{max}}$. We also observe that $\frac{2q}{q+2d_{avg}}$ is usually a good estimate of α^* .

VARIANCE REDUCTION VIA STRATIFICATION

VARIANCE REDUCTION VIA STRATIFICATION

VARIANCE REDUCTION VIA STRATIFICATION

· The stratified estimator is:

· The stratified estimator is:

For certain allocations of N_k's, one has reduced variance

· The stratified estimator is:

- For certain allocations of N_k 's, one has reduced variance
- We need to have a random variable Y such that:
 - X|Y is easy to sample,
 - $\mathbb{P}(Y \in C_i)$ is accessible.

· Y = $|\rho_1(\Phi_q)|$ as the number of the roots that are sampled at the first visit.

 $\cdot Y = |\rho_1(\Phi_q)|$ as the number of the roots that are sampled at the first visit.

 $\cdot Y = |\rho_1(\Phi_q)|$ as the number of the roots that are sampled at the first visit.

COMPARISON WITH HUTCHINSON'S ESTIMATOR

 We compare the time needed by the estimators for reaching a certain accuracy.

CHALLENGES

- Graph Signal Smoothing
- Trace Estimation
- · Estimating Effective Resistances

Definition (Electrical Representation) In the electrical representation of a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, each edge is a resistor with a resistance $\frac{1}{w(i,i)}$.

Definition (Electrical Representation) In the electrical representation of a graph $\mathcal{G}=(\mathcal{V},\mathcal{E},w)$, each edge is a resistor with a resistance $\frac{1}{w(i,j)}$.

• The effective resistance between node i and j:

$$R_{i,j} \coloneqq L_{i,i}^{\dagger} + L_{j,j}^{\dagger} - L_{i,j}^{\dagger} - L_{j,i}^{\dagger}$$

Definition (Electrical Representation) In the electrical representation of a graph $\mathcal{G}=(\mathcal{V},\mathcal{E},w)$, each edge is a resistor with a resistance $\frac{1}{w(i,j)}$.

• The effective resistance between node i and j:

$$R_{i,j} \coloneqq L_{i,i}^\dagger + L_{j,j}^\dagger - L_{i,j}^\dagger - L_{j,i}^\dagger$$

· The effective conductance:

$$I_{i,j} \coloneqq \frac{1}{R_{i,i}}$$

 \cdot R_{i,j} is a distance metric between i and j.

- \cdot R_{i,j} is a distance metric between i and j.
- They are of central importance in many graph related applications:
 - · Clustering (Alev et al. 2017),
 - · Sparsification (Spielman and Srivastava 2011),
 - · Learning (Ghosh et al. 2008),
 - · Network robustness (Wang et al. 2014).

Effective Resistances: What, Why and How?

- \cdot R_{i,j} is a distance metric between i and j.
- They are of central importance in many graph related applications:
 - · Clustering (Alev et al. 2017),
 - · Sparsification (Spielman and Srivastava 2011),
 - · Learning (Ghosh et al. 2008),
 - · Network robustness (Wang et al. 2014).
- In large scale, they are expensive to compute.

 \cdot The well-known algorithms are Monte Carlo estimators.

- The well-known algorithms are Monte Carlo estimators.
- They can be divided into two groups:

- The well-known algorithms are Monte Carlo estimators.
- · They can be divided into two groups:
 - Global methods estimate $R_{i,j}$'s for all pairs (i,j) (or all edges $(i,j) \in \mathcal{E}$), e.g. estimating by Random Projections (RP) (Spielman and Srivastava 2011) or Spanning Trees (ST) (Hayashi et al. 2016),

- The well-known algorithms are Monte Carlo estimators.
- · They can be divided into two groups:
 - Global methods estimate $R_{i,j}$'s for all pairs (i,j) (or all edges $(i,j) \in \mathcal{E}$), e.g. estimating by Random Projections (RP) (Spielman and Srivastava 2011) or Spanning Trees (ST) (Hayashi et al. 2016),
 - Local methods estimate small number of pairs without discovering the whole graph (Peng et al. 2021).

- The well-known algorithms are Monte Carlo estimators.
- · They can be divided into two groups:
 - Global methods estimate $R_{i,j}$'s for all pairs (i,j) (or all edges $(i,j) \in \mathcal{E}$), e.g. estimating by Random Projections (RP) (Spielman and Srivastava 2011) or Spanning Trees (ST) (Hayashi et al. 2016),
 - Local methods estimate small number of pairs without discovering the whole graph (Peng et al. 2021).
- The RSF-based global and local estimators are proposed.

- The well-known algorithms are Monte Carlo estimators.
- · They can be divided into two groups:
 - Global methods estimate $R_{i,j}$'s for all pairs (i,j) (or all edges $(i,j) \in \mathcal{E}$), e.g. estimating by Random Projections (RP) (Spielman and Srivastava 2011) or Spanning Trees (ST) (Hayashi et al. 2016),
 - Local methods estimate small number of pairs without discovering the whole graph (Peng et al. 2021).
- The RSF-based global and local estimators are proposed.

$$\mathsf{R}^{\mathsf{LF}}_{\mathsf{i},\mathsf{j}} \coloneqq \frac{\mathsf{N}}{\sum_{k=1}^{\mathsf{N}} \hat{\mathsf{I}}^{(k)}_{\mathsf{i},\mathsf{j}}}$$

ESTIMATING R_{i,j} VIA LOCAL FORESTS (LF)

· R^{LF} is biased but the bias diminishes faster than the variance.

EXPERIMENTS

• We report the run-time of the local algorithms for approximately the same relative error.

Algorithm Dataset	TP	MC2	LF(ours)
Cora	116	11	2
Citeseer	362	6	1
Pubmed	333	91	12
Collab-CM	82	156	20

Table 1: Runtime (ms) of the local algorithms over benchmark datasets

OUTLINE

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.

- This thesis gives a new perspective for Laplacian-based numerical algebra.
- This perspective leverages fascinating links between the graph Laplacians and RSFs, yielding efficient solutions to the applications:

- This thesis gives a new perspective for Laplacian-based numerical algebra.
- This perspective leverages fascinating links between the graph Laplacians and RSFs, yielding efficient solutions to the applications:

Not only in,

- · Graph signal smoothing,
- · Trace estimation,
- Estimating ERs.

- This thesis gives a new perspective for Laplacian-based numerical algebra.
- This perspective leverages fascinating links between the graph Laplacians and RSFs, yielding efficient solutions to the applications:

Not only in,

- · Graph signal smoothing,
- · Trace estimation,
- Estimating ERs.

But also,

- Graph signal filtering,
- · Semi-supervised learning,
- Graph-based optimization.

- This thesis gives a new perspective for Laplacian-based numerical algebra.
- This perspective leverages fascinating links between the graph Laplacians and RSFs, yielding efficient solutions to the applications:

Not only in,

- · Graph signal smoothing,
- · Trace estimation,
- Estimating ERs.

But also,

- Graph signal filtering,
- · Semi-supervised learning,
- Graph-based optimization.

LIMITATIONS AND OPEN QUESTIONS

Possible Directions

Limitations

· Restricted to SDDs,

Limitations

Restricted to SDDs,

Possible Directions

 Extending other matrices via Importance Sampling,

Limitations

- Restricted to SDDs,
- Not competitive in high precision regime,

Possible Directions

 Extending other matrices via Importance Sampling,

Limitations

- Restricted to SDDs,
- Not competitive in high precision regime,

- Extending other matrices via Importance Sampling,
- · RSFs as Preconditioning,

Limitations

- Restricted to SDDs,
- Not competitive in high precision regime,
- · Sampling at small q,

- Extending other matrices via Importance Sampling,
- RSFs as Preconditioning,

Limitations

- · Restricted to SDDs,
- Not competitive in high precision regime,
- · Sampling at small q,

- Extending other matrices via Importance Sampling,
- · RSFs as Preconditioning,
- Faster sampling algorithms, Early-stop strategies...

Limitations

- · Restricted to SDDs,
- Not competitive in high precision regime,
- · Sampling at small q,

Possible Directions

- Extending other matrices via Importance Sampling,
- RSFs as Preconditioning,
- Faster sampling algorithms, Early-stop strategies...

Open Questions

• $\rho_1(\Phi_q)$ is a DPP as well:

$$\mathbb{P}(S \subseteq \rho_1(\Phi_q)) = \det K_1 \text{ with } K_1 = q(qI + D)^{-1}.$$

Limitations

- · Restricted to SDDs,
- Not competitive in high precision regime,
- · Sampling at small q,

Possible Directions

- Extending other matrices via Importance Sampling,
- · RSFs as Preconditioning,
- Faster sampling algorithms, Early-stop strategies...

Open Questions

• $\rho_1(\Phi_q)$ is a DPP as well:

$$\mathbb{P}(S \subseteq \rho_1(\Phi_q)) = \det K_1 \text{ with } K_1 = q(qI + D)^{-1}.$$

• What happens between $\rho_1(\Phi_q)$ and $\rho(\Phi_q)$?

PUBLICATIONS

Journal

 Yusuf Yiğit Pilavcı, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (2021). "Graph tikhonov regularization and interpolation via random spanning forests". In: IEEE transactions on Signal and Information Processing over Networks 7, pp. 359–374

Conference

- Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (Sept. 2022). "Variance Reduction for Inverse Trace Estimation via Random Spanning Forests". In: GRETSI 2022 - XXVIIIème Colloque Francophone de Traitement du Signal et des Images. Nancy, France
- Yusuf Yigit Pilavcı, Pierre-Olivier Amblard, Simon Barthelmé, and Nicolas Tremblay (2022). "Variance Reduction in Stochastic Methods for Large-Scale Regularized Least-Squares Problems". In: 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, pp. 1771–1775
- Yusuf Y Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (2020). "Smoothing graph signals via random spanning forests". In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5630–5634

Thanks!

Just a PhD..

RANDOM SPANNING FORESTS

· For fixed subsets $V \subseteq \mathcal{V}$ and $S \subseteq \mathcal{E}$ with |V| = |S|, one has:

$$\det B_{S|V} = \begin{cases} \left(\prod_{(i,j) \in S} w(i,j)\right)^{1/2}, & \text{if S forms a spanning forest rooted in V} \\ 0, & \text{otherwise.} \end{cases}$$

• We can count the spanning forests rooted in $R \subseteq \mathcal{V}$:

$$\forall R \subseteq \mathcal{V}, \quad \det L_{-R} = \sum_{\phi \in \mathcal{F}_R} \prod_{(i,j) \in \mathcal{E}_\phi} w(i,j).$$

• The root probability can be seen as a ratio of counts:

$$\mathbb{P}(r_{\Phi_q}(i)=j) = K_{i,j} = q \frac{(-1)^{i+j}\det(L+qI)_{-i|-j}}{\det(L+qI)} = \frac{|\mathcal{F}^{i\to j}|}{|\mathcal{F}|}$$

LOOP-ERASED RANDOM WALKS

Theorem (Law of LERWs (Marchal 2000)) A loop-erased random walk LE(W) on $\mathcal{G}=(\mathcal{V},\mathcal{E},w)$ that is stopped at the boundary $\Delta\subset\mathcal{V}$ has the following probability distribution:

$$\mathbb{P}(\mathsf{LE}(\mathsf{W}) = \gamma) = \frac{\det \mathsf{L}_{-\Delta \cup \mathsf{S}(\gamma)}}{\det \mathsf{L}_{-\Delta}} \prod_{(i,j) \in \gamma} \mathsf{w}(i,j)$$

where γ is a fixed path and $s(\gamma)$ denotes the nodes visited in γ .

GRAPH FILTERING VIA DUPLICATED GRAPH

• The product Ky corresponds to a graph filtering with the transfer function:

$$g_{q}(\lambda) = \frac{q}{q + \lambda}$$

· We duplicate the graph and the input $\mathbf{y}_{\mathsf{d}} = \begin{bmatrix} \alpha \mathbf{y} \\ \beta \mathbf{y} \end{bmatrix}$

• The transfer function is paramerized by $\theta = (q_1, q_2, \alpha, \beta)$:

$$f_{\theta}(\lambda) = \frac{\alpha q_1(\lambda + h(0) + q_2) + \beta q_2(h(\lambda))}{(\lambda + h(0) + q_1)(\lambda + h(0) + q_2) - h(\lambda)^2},$$

L₁ Graph Regularization

• Another type of regularization is L₁ regularization:

$$\boldsymbol{x}^{\star} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^{n}} \frac{q}{2} ||\boldsymbol{x} - \boldsymbol{y}||_{2}^{2} + ||\boldsymbol{B}\boldsymbol{x}||_{1}$$

· Alternating direction of multipliers (ADMM) approximates \mathbf{x}^* by:

$$\begin{split} & x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left(\frac{q}{2} ||x-y||_2^2 + \frac{\rho}{2} ||Bx-z_k+u_k||_2^2 \right) \\ & z_{k+1} = \operatorname*{argmin}_{z \in \mathbb{R}^m} \left(||z||_1 + \frac{\rho}{2} ||Bx_{k+1}-z+u_k||_2^2 \right) \\ & u_{k+1} = u_k + (Bx^{k+1}-z^{k+1}). \end{split}$$

EXTENSION TO SDDS

- · Let $G = U^T \Lambda U = A^{(p)} + A^{(n)} + D^{(1)} + D^{(2)}$ be an symmetric diagonally dominant matrix where $D_{i,i}^{(1)} = \sum_{i \neq j} G_{i,j}$ and $D_{i,i}^{(2)} = G_{i,i} D_{i,i}^{(1)}$.
- · Construct the graph Laplacians:

$$\begin{split} L_1 &= D^{(1)} + A^{(n)} - A^{(p)}/2 = U_1^\top \Lambda_1 U_1 \\ L_2 &= \begin{bmatrix} D^{(1)} + A^{(n)} + D^{(2)}/2 & -D^{(2)}/2 - A^{(p)} \\ -D^{(2)}/2 - A^{(p)} & D^{(1)} + A^{(n)} + D^{(2)}/2 \end{bmatrix} \end{split}$$

- The eigenvectors of L_2 are $U_2 = \begin{bmatrix} U & U_1 \\ -U & U_1 \end{bmatrix}$
- The eigenvalues of L_2 are $\lambda_2 = \lambda_1 \cup \lambda$

CROSS-VALIDATION FOR GTR

• The leave-one-out cross-validation for graph Tikhonov regularization boils down to:

$$LOOCV(q) = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{y_i - \hat{x}_i}{1 - K_{i,i}} \right)^2.$$

• The generalized CV approximation is:

$$GCV(q) = \frac{1}{N} \left(\sum_{i=1}^{n} \frac{y_i - \hat{x}_i}{1 - (\operatorname{tr}(K)/n)} \right)^2.$$

REFERENCES I

- Alev, Vedat Levi et al. (2017). "Graph clustering using effective resistance". In: arXiv preprint arXiv:1711.06530.
- Avena, Luca et al. (2018). "Random forests and networks analysis". In: Journal of Statistical Physics 173.3, pp. 985–1027.
 - Barthelme, Simon et al. (Aug. 2019). "Estimating the inverse trace using random forests on graphs". In: GRETSI 2019 XXVIIème Colloque francophone de traitement du signal et des images. Lille, France. URL: https://hal.archives-ouvertes.fr/hal-02319194.
 - Ghosh, Arpita et al. (2008). "Minimizing effective resistance of a graph". In: SIAM review 50.1, pp. 37–66.

REFERENCES II

- Hayashi, Takanori et al. (2016). "Efficient Algorithms for Spanning Tree Centrality.". In: IJCAL Vol. 16, pp. 3733–3739.
- Marchal, Philippe (2000). "Loop-erased random walks, spanning trees and Hamiltonian cycles". In: Electronic Communications in Probability 5, pp. 39–50.
- Peng, Pan et al. (2021). "Local Algorithms for Estimating Effective Resistance". In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1329–1338.
 - Pilavci, Yusuf Y et al. (2020). "Smoothing graph signals via random spanning forests". In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5630–5634.

REFERENCES III

- Pilavci, Yusuf Yigit et al. (Sept. 2022). "Variance Reduction for Inverse Trace

 Estimation via Random Spanning Forests". In: GRETSI 2022 XXVIIIème Colloque

 Francophone de Traitement du Signal et des Images. Nancy, France.
- Pilavcı, Yusuf Yigit et al. (2022). "Variance Reduction in Stochastic Methods for Large-Scale Regularized Least-Squares Problems". In: 2022 30th European Signal Processing Conference (EUSIPCO). IEEE, pp. 1771–1775.
- Pilavcı, Yusuf Yiğit et al. (2021). "Graph tikhonov regularization and interpolation via random spanning forests". In: IEEE transactions on Signal and Information Processing over Networks 7, pp. 359–374.
- Spielman, Daniel A and Nikhil Srivastava (2011). "Graph sparsification by effective resistances". In: SIAM Journal on Computing 40.6, pp. 1913–1926.

REFERENCES IV

- Spielman, Daniel A and Shang-Hua Teng (2004). "Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems". In:

 Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 81–90.
 - Wang, Xiangrong et al. (2014). "Improving robustness of complex networks via the effective graph resistance". In: The European Physical Journal B 87.9, pp. 1–12.
 - Wilson, David Bruce (1996). "Generating random spanning trees more quickly than the cover time". In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 296–303.