
Wilson’s Algorithm for Randomized Linear Algebra

Yusuf Yiğit Pilavcı
Advisors:

Pierre-Olivier Amblard
Simon Barthelmé
Nicolas Tremblay

15/11/2022

What’s inside?

My PhD

Graph Theory

Linear Algebra Random Processes

2/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks

Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks

Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet

Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks

Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks

Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graphs are Ubiquitous...

Road Networks Social Networks Internet Brain Networks

Point Clouds Networks Molecule Networks Tonnetz

• • •

3/44

Graph related Linear Algebra

a

b c

d

1

1.5

2

0.5

G = (V, E ,w)

a b c d


a 0 1 2 0.5
b 1 0 1.5 0
c 2 1.5 0 0
d 0.5 0 0 0

Adjacency matrix W


3.5 0 0 0
0 2.5 0 0
0 0 3.5 0
0 0 0 0.5


Degree matrix D


3.5 -1 -2 -0.5
-1 2.5 -1.5 0
-2 -1.5 3.5 0
-0.5 0 0 0.5


Laplacian matrix

L = D−W

4/44

Graph related Linear Algebra

a

b c

d

1

1.5

2

0.5

G = (V, E ,w)

a b c d


a 0 1 2 0.5
b 1 0 1.5 0
c 2 1.5 0 0
d 0.5 0 0 0

Adjacency matrix W


3.5 0 0 0
0 2.5 0 0
0 0 3.5 0
0 0 0 0.5


Degree matrix D


3.5 -1 -2 -0.5
-1 2.5 -1.5 0
-2 -1.5 3.5 0
-0.5 0 0 0.5


Laplacian matrix

L = D−W

4/44

Graph related Linear Algebra

a

b c

d

1

1.5

2

0.5

G = (V, E ,w)

a b c d


a 0 1 2 0.5
b 1 0 1.5 0
c 2 1.5 0 0
d 0.5 0 0 0

Adjacency matrix W


3.5 0 0 0
0 2.5 0 0
0 0 3.5 0
0 0 0 0.5


Degree matrix D


3.5 -1 -2 -0.5
-1 2.5 -1.5 0
-2 -1.5 3.5 0
-0.5 0 0 0.5


Laplacian matrix

L = D−W

4/44

Graph related Linear Algebra

a

b c

d

1

1.5

2

0.5

G = (V, E ,w)

a b c d


a 0 1 2 0.5
b 1 0 1.5 0
c 2 1.5 0 0
d 0.5 0 0 0

Adjacency matrix W


3.5 0 0 0
0 2.5 0 0
0 0 3.5 0
0 0 0 0.5


Degree matrix D


3.5 -1 -2 -0.5
-1 2.5 -1.5 0
-2 -1.5 3.5 0
-0.5 0 0 0.5


Laplacian matrix

L = D−W 4/44

The Graph Laplacian is Ubiquitous...

Theory
• Connectivity Analysis
• Graph Partitioning
• Spanning Trees
• Random Walks (Loop-Erased)...

Applications
• Graph Signal Processing
• Machine learning
• Visualization
• Sparsification
• Robustness analysis...

" However, some computations do not scale with large graphs.

5/44

The Graph Laplacian is Ubiquitous...

Theory
• Connectivity Analysis
• Graph Partitioning
• Spanning Trees
• Random Walks (Loop-Erased)...

Applications
• Graph Signal Processing
• Machine learning
• Visualization
• Sparsification
• Robustness analysis...

" However, some computations do not scale with large graphs.

5/44

The Graph Laplacian is Ubiquitous...

Theory
• Connectivity Analysis
• Graph Partitioning
• Spanning Trees
• Random Walks (Loop-Erased)...

Applications
• Graph Signal Processing
• Machine learning
• Visualization
• Sparsification
• Robustness analysis...

" However, some computations do not scale with large graphs.

5/44

The Graph Laplacian is Ubiquitous...

Theory
• Connectivity Analysis
• Graph Partitioning
• Spanning Trees
• Random Walks (Loop-Erased)...

Applications
• Graph Signal Processing
• Machine learning
• Visualization
• Sparsification
• Robustness analysis...

" However, some computations do not scale with large graphs.

5/44

Graph Signal Smoothing

Original Signal: y:

x̂:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||22︸ ︷︷ ︸
Fidelity

+ xTLx︸︷︷︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i,j)∈E
w(i, j)(xi − xj)2.

6/44

Graph Signal Smoothing

Original Signal: y: x̂:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||22︸ ︷︷ ︸
Fidelity

+ xTLx︸︷︷︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i,j)∈E
w(i, j)(xi − xj)2.

6/44

Graph Signal Smoothing

Original Signal: y: x̂:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||22︸ ︷︷ ︸
Fidelity

+ xTLx︸︷︷︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i,j)∈E
w(i, j)(xi − xj)2.

6/44

Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).

7/44

Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).

7/44

Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).

7/44

Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).

7/44

Graph Signal Smoothing

• The explicit solution to this problem is:

x̂ = Ky with K = q(L+ qI)−1

• Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

• Direct computation of K requires O(n3) elementary operations due to the
inverse.

• For large n, iterative methods and polynomial approximations are
state-of-the-art.

• For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).

7/44

Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi

tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?
• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).

8/44

Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?
• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).

8/44

Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?

• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).

8/44

Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?
• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).

8/44

Inverse Trace Estimation

• Trace is an essential operation:

tr(A) =
∑n
i=1 δ>

i Aδi tr(A−1) =
∑n
i=1 δ>

i A
−1δi

• How to choose a good value for the hyperparameter q?
• There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

• Each uses a quantity called the effective degree of freedom which is equal to
tr(K).

8/44

Randomized Linear Algebra

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

Sample
f




9/44

Randomized Linear Algebra

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

Sample

f




9/44

Randomized Linear Algebra

• RLA is a branch of numerical linear algebra developing Monte Carlo methods.

Sample
f




9/44

Main Theme

• RLA algorithms for Laplacian-based numerical algebra by using Random
Spanning Forests.

Sample f




10/44

Outline

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

11/44

Outline

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

12/44

Spanning Forests

Graph

Spanning Tree Rooted
Spanning Tree

Rooted
Spanning Forest

13/44

Spanning Forests

Graph Spanning Tree

Rooted
Spanning Tree

Rooted
Spanning Forest

13/44

Spanning Forests

Graph Spanning Tree Rooted
Spanning Tree

Rooted
Spanning Forest

13/44

Spanning Forests

Graph Spanning Tree Rooted
Spanning Tree

Rooted
Spanning Forest

13/44

Forest Notations

• Given a graph G = (V, E ,w), we denote:

j

i

• a spanning forest by φ and

its root set by ρ(φ),
• the root of vertex i in φ by rφ(i) = j.

14/44

Forest Notations

• Given a graph G = (V, E ,w), we denote:

j

i

• a spanning forest by φ and its root set by ρ(φ),

• the root of vertex i in φ by rφ(i) = j.

14/44

Forest Notations

• Given a graph G = (V, E ,w), we denote:

j

i

• a spanning forest by φ and its root set by ρ(φ),
• the root of vertex i in φ by rφ(i) = j.

14/44

Random Spanning Forests: What, Why and How?

• Random spanning forests is the process of selecting a forest at random over
all possible ones.

Definition (RSF)
A random spanning forest Φq on a graph G is spanning forest selected over all
spanning forests of G according to the following distribution:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i,j)∈Eφ

w(i, j)

• q > 0 changes the expected number of roots.

15/44

Random Spanning Forests: What, Why and How?

• Random spanning forests is the process of selecting a forest at random over
all possible ones.

Definition (RSF)
A random spanning forest Φq on a graph G is spanning forest selected over all
spanning forests of G according to the following distribution:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i,j)∈Eφ

w(i, j)

• q > 0 changes the expected number of roots.

15/44

Random Spanning Forests: What, Why and How?

• Random spanning forests is the process of selecting a forest at random over
all possible ones.

Definition (RSF)
A random spanning forest Φq on a graph G is spanning forest selected over all
spanning forests of G according to the following distribution:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i,j)∈Eφ

w(i, j)

• q > 0 changes the expected number of roots.

15/44

Random Spanning Forests: What, Why and How?

• The random roots ρ(Φq) is a determinantal point process with a marginal
kernel K = q(L+ qI)−1 (Avena et al. 2018):

∀S ⊆ V, P(S ⊆ ρ(Φq)) = det KS.

• Moreover, we have the following identity (Avena et al. 2018):

∀i, j ∈ V, P(rΦq(i) = j) = Ki,j.

• There is an efficient algorithm to sample RSFs, called Wilson’s
algorithm (Wilson 1996).

16/44

Random Spanning Forests: What, Why and How?

• The random roots ρ(Φq) is a determinantal point process with a marginal
kernel K = q(L+ qI)−1 (Avena et al. 2018):

∀S ⊆ V, P(S ⊆ ρ(Φq)) = det KS.

• Moreover, we have the following identity (Avena et al. 2018):

∀i, j ∈ V, P(rΦq(i) = j) = Ki,j.

• There is an efficient algorithm to sample RSFs, called Wilson’s
algorithm (Wilson 1996).

16/44

Random Spanning Forests: What, Why and How?

• The random roots ρ(Φq) is a determinantal point process with a marginal
kernel K = q(L+ qI)−1 (Avena et al. 2018):

∀S ⊆ V, P(S ⊆ ρ(Φq)) = det KS.

• Moreover, we have the following identity (Avena et al. 2018):

∀i, j ∈ V, P(rΦq(i) = j) = Ki,j.

• There is an efficient algorithm to sample RSFs, called Wilson’s
algorithm (Wilson 1996).

16/44

Random Spanning Forests: What, Why and How?

• The random roots ρ(Φq) is a determinantal point process with a marginal
kernel K = q(L+ qI)−1 (Avena et al. 2018):

∀S ⊆ V, P(S ⊆ ρ(Φq)) = det KS.

• Moreover, we have the following identity (Avena et al. 2018):

∀i, j ∈ V, P(rΦq(i) = j) = Ki,j.

• There is an efficient algorithm to sample RSFs, called Wilson’s
algorithm (Wilson 1996).

16/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

4

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

6

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|.

17/44

Random Spanning Forests: What, Why and How?

• Consider an simple random walk on G with the transition rule:
• take a step from i to j with probability w(i,j)

q+di
,

• interrupt at any node i with a probability q
q+di

.

12 3

4

5

6 7

8 9

1

8

2

9

• The expected number of steps is known:

tr
[
(L+ qI)−1(D+ qI)

]
≤ 2|E|

q
+ |V|. 17/44

Outline

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

18/44

Main Contributions

Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances

Original Signal: y:

x̂ = Ky:

19/44

Main Contributions

Challenges

• Graph Signal Smoothing
Original Signal: y: x̂ = Ky:

19/44

Smoothing Via Forests

Sample
a forest

Average&
Propagate

• Random partitions are sampled via random spanning forests.
• This yields an unbiased estimator x̄.

20/44

Smoothing Via Forests

Sample
a forest

Average&
Propagate

• Random partitions are sampled via random spanning forests.

• This yields an unbiased estimator x̄.

20/44

Smoothing Via Forests

Sample
a forest

Average&
Propagate

• Random partitions are sampled via random spanning forests.
• This yields an unbiased estimator x̄.

20/44

Comparison with State of the art

• We compare the algorithms in approximation error (error respect to x̂) and
reconstruction error (error respect to x)

x x̂ = Ky

App.
ErrorRec. Error

21/44

Comparison with State of the art

• We compare the algorithms in approximation error (error respect to x̂) and
reconstruction error (error respect to x)

x x̂ = Ky

App.
ErrorRec. Error

21/44

Comparison with State of the art

10 4 10 3

Time (s)

10 5

10 4

10 3

10 2

10 1

100
Ap

p.
 E

rro
r |

|x
|| 2

cg
x

10 4 10 3

Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
c.

 E
rro

r |
|x

|| 2
22/44

Gradient Descent Update as Control Variate

• The approximation error can be improved by variance reduction.

• The solution x̂ also minimizes:

F(x) = 1
2
x>K−1x− x>y.

• The gradient descent algorithm draws the following iteration scheme:

xk+1 = xk − α∇F(xk)

where α ∈ R and ∇F(xk) = K−1xk − y.
• We propose to apply the gradient descent update on the previous estimator
x̄:

z̄ := x̄− α(K−1x̄− y)

23/44

Gradient Descent Update as Control Variate

• The approximation error can be improved by variance reduction.
• The solution x̂ also minimizes:

F(x) = 1
2
x>K−1x− x>y.

• The gradient descent algorithm draws the following iteration scheme:

xk+1 = xk − α∇F(xk)

where α ∈ R and ∇F(xk) = K−1xk − y.
• We propose to apply the gradient descent update on the previous estimator
x̄:

z̄ := x̄− α(K−1x̄− y)

23/44

Gradient Descent Update as Control Variate

• The approximation error can be improved by variance reduction.
• The solution x̂ also minimizes:

F(x) = 1
2
x>K−1x− x>y.

• The gradient descent algorithm draws the following iteration scheme:

xk+1 = xk − α∇F(xk)

where α ∈ R and ∇F(xk) = K−1xk − y.

• We propose to apply the gradient descent update on the previous estimator
x̄:

z̄ := x̄− α(K−1x̄− y)

23/44

Gradient Descent Update as Control Variate

• The approximation error can be improved by variance reduction.
• The solution x̂ also minimizes:

F(x) = 1
2
x>K−1x− x>y.

• The gradient descent algorithm draws the following iteration scheme:

xk+1 = xk − α∇F(xk)

where α ∈ R and ∇F(xk) = K−1xk − y.
• We propose to apply the gradient descent update on the previous estimator
x̄:

z̄ := x̄− α(K−1x̄− y)

23/44

Properties of this estimator

• z̄ is unbiased.

• A matrix-vector product with L is needed only once.
• For certain values of α, we have improved performance.
• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.

24/44

Properties of this estimator

• z̄ is unbiased.
• A matrix-vector product with L is needed only once.

• For certain values of α, we have improved performance.
• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.

24/44

Properties of this estimator

• z̄ is unbiased.
• A matrix-vector product with L is needed only once.
• For certain values of α, we have improved performance.

• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.

24/44

Properties of this estimator

• z̄ is unbiased.
• A matrix-vector product with L is needed only once.
• For certain values of α, we have improved performance.
• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.

24/44

Properties of this estimator

• z̄ is unbiased.
• A matrix-vector product with L is needed only once.
• For certain values of α, we have improved performance.
• The optimal value is:

α? =
tr(Cov(K−1x̄, x̄))
tr(Var(K−1x̄)) .

• One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax) or

estimate from the samples:

α̂ =
tr(Ĉov(K−1x̄, x̄))
tr(V̂ar(K−1x̄))

.

24/44

Range of α

• We empirically compare these options of α over a regular and irregular graph:

0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5
Sq

ua
re

d
er

ro
r

Regular Graph

0.00 0.02 0.04 0.06 0.08 0.10
2

3

4

5

6

Barabasi-Albert Graph

||z-x||22 ||x-x||22 = 2q
q + 2dmax

Min. error

25/44

An Illustration

x: y: x̂:

x̄, N=1: z̄, N=1:

26/44

An Illustration

x: y: x̂:

x̄, N=1: z̄, N=1:

26/44

An Illustration

10 1 100 101

q

1.4 × 101

1.6 × 101

1.8 × 101

2 × 101

2.2 × 101

2.4 × 101

PS
NR

PSNR vs q

x
x
Noisy signal
z
z with

Figure 7: PSNR vs q, N=2 27/44

Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances

28/44

Inverse Trace Estimation: Hutchinson’s Estimator

• A famous algorithm for estimating tr(K) is Hutchinson’s estimator:

h :=
1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a(i)j = ±1) = 1/2.

• It is an unbiased estimator of tr(K).
• The cumbersome computation here is Ka(i) for N vectors.
• It can be done via:

• Direct computation via Cholesky decomposition
• (Preconditioned) Iterative solvers
• Algebraic Multigrid solvers
• ...

29/44

Inverse Trace Estimation: Hutchinson’s Estimator

• A famous algorithm for estimating tr(K) is Hutchinson’s estimator:

h :=
1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a(i)j = ±1) = 1/2.
• It is an unbiased estimator of tr(K).

• The cumbersome computation here is Ka(i) for N vectors.
• It can be done via:

• Direct computation via Cholesky decomposition
• (Preconditioned) Iterative solvers
• Algebraic Multigrid solvers
• ...

29/44

Inverse Trace Estimation: Hutchinson’s Estimator

• A famous algorithm for estimating tr(K) is Hutchinson’s estimator:

h :=
1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a(i)j = ±1) = 1/2.
• It is an unbiased estimator of tr(K).
• The cumbersome computation here is Ka(i) for N vectors.

• It can be done via:
• Direct computation via Cholesky decomposition
• (Preconditioned) Iterative solvers
• Algebraic Multigrid solvers
• ...

29/44

Inverse Trace Estimation: Hutchinson’s Estimator

• A famous algorithm for estimating tr(K) is Hutchinson’s estimator:

h :=
1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a(i)j = ±1) = 1/2.
• It is an unbiased estimator of tr(K).
• The cumbersome computation here is Ka(i) for N vectors.
• It can be done via:

• Direct computation via Cholesky decomposition
• (Preconditioned) Iterative solvers
• Algebraic Multigrid solvers
• ...

29/44

Forest based Trace Estimator

• Another unbiased estimator is by RSFs (Barthelme et al. 2019):

s := |ρ(Φq)| with E[s] = tr(K)

• This estimator gives an comparable performance with the existing algorithms.
• One can use this estimator in case of symmetric diagonally dominant
matrices instead of the graph Laplacians.

30/44

Forest based Trace Estimator

• Another unbiased estimator is by RSFs (Barthelme et al. 2019):

s := |ρ(Φq)| with E[s] = tr(K)

• This estimator gives an comparable performance with the existing algorithms.

• One can use this estimator in case of symmetric diagonally dominant
matrices instead of the graph Laplacians.

30/44

Forest based Trace Estimator

• Another unbiased estimator is by RSFs (Barthelme et al. 2019):

s := |ρ(Φq)| with E[s] = tr(K)

• This estimator gives an comparable performance with the existing algorithms.
• One can use this estimator in case of symmetric diagonally dominant
matrices instead of the graph Laplacians.

30/44

Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.
• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.

31/44

Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.

• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.

31/44

Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.
• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.

31/44

Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.
• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.

31/44

Variance Reduction via Control Variates

• One can rewrite x̄ = S̄y.
• The control variate estimator for K:

Z̄ = S̄− α(K−1S̄− I).

• We define the new trace estimator as

s̄ := tr(Z̄).

• A safe value of α is 2q
q+2dmax . We also observe that

2q
q+2davg is usually a good

estimate of α?.

31/44

Variance Reduction via Stratification

• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification

• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification

• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification
• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification
• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification
• The stratified estimator is:

Xst :=
K∑
k=1

1
Nk


Nk∑
j=1
Y∈Ck

X(j)


︸ ︷︷ ︸

Conditional Expectation

P(Y ∈ Ci)

︸ ︷︷ ︸
Marginalization over Y

.

• For certain allocations of Nk’s, one has
reduced variance

• We need to have a random variable Y
such that:

• X|Y is easy to sample,
• P(Y ∈ Ci) is accessible.

32/44

Variance Reduction via Stratification

• Y = |ρ1(Φq)| as the number of the roots that are sampled at the first visit.

33/44

Variance Reduction via Stratification

• Y = |ρ1(Φq)| as the number of the roots that are sampled at the first visit.

12 3

4

5

6 7

8 9

1

33/44

Variance Reduction via Stratification

• Y = |ρ1(Φq)| as the number of the roots that are sampled at the first visit.

12 3

4

5

6 7

8 98

2

9

33/44

Comparison with Hutchinson’s Estimator

• We compare the time needed by the estimators for reaching a certain
accuracy.

10 1

tr(K)/n
10 3

10 2

10 1

100

101

Ef
fe

ct
iv

e
Ru

nt
im

e
(s

ec
.)

Collab-CM

10 1

tr(K)/n

10 2

10 1

100

101

Amazon

34/44

Challenges

• Graph Signal Smoothing
• Trace Estimation
• Estimating Effective Resistances

35/44

Effective Resistances: What, Why and How?

Definition (Electrical Representation)
In the electrical representation of a graph G = (V, E ,w), each edge is a
resistor with a resistance 1

w(i,j) .

• The effective resistance between node i and j:

Ri,j := L†
i,i + L†

j,j − L†
i,j − L†

j,i

• The effective conductance:
Ii,j :=

1
Ri,j

36/44

Effective Resistances: What, Why and How?

Definition (Electrical Representation)
In the electrical representation of a graph G = (V, E ,w), each edge is a
resistor with a resistance 1

w(i,j) .

• The effective resistance between node i and j:

Ri,j := L†
i,i + L†

j,j − L†
i,j − L†

j,i

• The effective conductance:
Ii,j :=

1
Ri,j

36/44

Effective Resistances: What, Why and How?

Definition (Electrical Representation)
In the electrical representation of a graph G = (V, E ,w), each edge is a
resistor with a resistance 1

w(i,j) .

• The effective resistance between node i and j:

Ri,j := L†
i,i + L†

j,j − L†
i,j − L†

j,i

• The effective conductance:
Ii,j :=

1
Ri,j

36/44

Effective Resistances: What, Why and How?

Definition (Electrical Representation)
In the electrical representation of a graph G = (V, E ,w), each edge is a
resistor with a resistance 1

w(i,j) .

• The effective resistance between node i and j:

Ri,j := L†
i,i + L†

j,j − L†
i,j − L†

j,i

• The effective conductance:
Ii,j :=

1
Ri,j

36/44

Effective Resistances: What, Why and How ?

• Ri,j is a distance metric between i and j.

• They are of central importance in many graph related applications:
• Clustering (Alev et al. 2017),
• Sparsification (Spielman and Srivastava 2011),
• Learning (Ghosh et al. 2008),
• Network robustness (Wang et al. 2014).

• In large scale, they are expensive to compute.

37/44

Effective Resistances: What, Why and How ?

• Ri,j is a distance metric between i and j.
• They are of central importance in many graph related applications:

• Clustering (Alev et al. 2017),
• Sparsification (Spielman and Srivastava 2011),
• Learning (Ghosh et al. 2008),
• Network robustness (Wang et al. 2014).

• In large scale, they are expensive to compute.

37/44

Effective Resistances: What, Why and How ?

• Ri,j is a distance metric between i and j.
• They are of central importance in many graph related applications:

• Clustering (Alev et al. 2017),
• Sparsification (Spielman and Srivastava 2011),
• Learning (Ghosh et al. 2008),
• Network robustness (Wang et al. 2014).

• In large scale, they are expensive to compute.

37/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.

• They can be divided into two groups:
• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.
• They can be divided into two groups:

• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.
• They can be divided into two groups:

• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.
• They can be divided into two groups:

• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.
• They can be divided into two groups:

• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Effective Resistances: What, Why and How?

• The well-known algorithms are Monte Carlo estimators.
• They can be divided into two groups:

• Global methods estimate Ri,j’s for all pairs (i, j) (or all edges
(i, j) ∈ E), e.g. estimating by Random Projections (RP) (Spielman and Srivastava
2011) or Spanning Trees (ST) (Hayashi et al. 2016),

• Local methods estimate small number of pairs without discovering the whole
graph (Peng et al. 2021).

• The RSF-based global and local estimators are proposed.

38/44

Estimating Ri,j via Local Forests (LF)

ij

Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij

Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij

Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Estimating Ri,j via Local Forests (LF)

ij Î(1)i,j = 1

ij Î(2)i,j = 0

...

RLFi,j := N∑N
k=1 Î

(k)
i,j

• RLF is biased but the bias diminishes faster than the variance.

39/44

Experiments

• We report the run-time of the local algorithms for approximately the same
relative error.

XXXXXXXXXXXXXDataset
Algorithm TP MC2 LF(ours)

Cora 116 11 2
Citeseer 362 6 1
Pubmed 333 91 12
Collab-CM 82 156 20

Table 1: Runtime (ms) of the local algorithms over benchmark datasets

40/44

Outline

Random Spanning Forests (RSF)

RSF-based Algorithms

Conclusion

41/44

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.

• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.

42/44

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.
• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.

42/44

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.
• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.

42/44

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.
• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.

42/44

Conclusion

• This thesis gives a new perspective for Laplacian-based numerical algebra.
• This perspective leverages fascinating links between the graph Laplacians
and RSFs, yielding efficient solutions to the applications:

Not only in,

• Graph signal smoothing,

• Trace estimation,

• Estimating ERs.

But also,

• Graph signal filtering,

• Semi-supervised learning,

• Graph-based optimization.

42/44

Limitations and Open Questions

Limitations

• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions

• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,

• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions

• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,

• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,

• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,

• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?

43/44

Limitations and Open Questions

Limitations
• Restricted to SDDs,
• Not competitive in high
precision regime,

• Sampling at small q,

Possible Directions
• Extending other matrices via
Importance Sampling,

• RSFs as Preconditioning,
• Faster sampling algorithms,
Early-stop strategies...

Open Questions

• ρ1(Φq) is a DPP as well:

P(S ⊆ ρ1(Φq)) = det K1 with K1 = q(qI+ D)−1.

• What happens between ρ1(Φq) and ρ(Φq)?
43/44

Publications
Journal

• Yusuf Yiğit Pilavcı, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (2021). “Graph tikhonov
regularization and interpolation via random spanning forests”. In: IEEE transactions on Signal and
Information Processing over Networks 7, pp. 359–374

Conference

• Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (Sept. 2022). “Variance
Reduction for Inverse Trace Estimation via Random Spanning Forests”. In: GRETSI 2022 - XXVIIIème
Colloque Francophone de Traitement du Signal et des Images. Nancy, France

• Yusuf Yigit Pilavcı, Pierre-Olivier Amblard, Simon Barthelmé, and Nicolas Tremblay (2022). “Variance
Reduction in Stochastic Methods for Large-Scale Regularized Least-Squares Problems”. In: 2022 30th
European Signal Processing Conference (EUSIPCO). IEEE, pp. 1771–1775

• Yusuf Y Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay (2020). “Smoothing graph
signals via random spanning forests”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, pp. 5630–5634

44/44

Thanks!

Just a PhD..

44/44

Random Spanning Forests

• For fixed subsets V ⊆ V and S ⊆ E with |V| = |S|, one has:

detBS|V =


(∏

(i,j)∈S w(i, j)
)1/2

, if S forms a spanning forest rooted in V

0, otherwise.

• We can count the spanning forests rooted in R ⊆ V :

∀R ⊆ V, det L−R =
∑

φ∈FR

∏
(i,j)∈Eφ

w(i, j).

• The root probability can be seen as a ratio of counts:

P(rΦq(i) = j) = Ki,j = q
(−1)i+j det(L+ qI)−i|−j

det (L+ qI)
=

|F i→j|
|F|

Loop-Erased Random Walks

Theorem (Law of LERWs (Marchal 2000))
A loop-erased random walk LE(W) on G = (V, E ,w) that is stopped at the
boundary ∆ ⊂ V has the following probability distribution:

P(LE(W) = γ) =
det L−∆∪s(γ)
det L−∆

∏
(i,j)∈γ

w(i, j)

where γ is a fixed path and s(γ) denotes the nodes visited in γ.

Graph Filtering via Duplicated Graph

• The product Ky corresponds to a graph filtering with the transfer function:

gq(λ) =
q

q+ λ

• We duplicate the graph and the input yd =
[
αy
βy

] A
B

C
D

A’ B’

C’ D’

• The transfer function is paramerized by θ = (q1,q2, α, β):

fθ(λ) =
αq1(λ + h(0) + q2) + βq2(h(λ))

(λ + h(0) + q1)(λ + h(0) + q2) − h(λ)2
,

L1 Graph Regularization

• Another type of regularization is L1 regularization:

x? = argmin
x∈Rn

q
2

||x− y||22 + ||Bx||1

• Alternating direction of multipliers (ADMM) approximates x? by:

xk+1 = argmin
x∈Rn

(q
2

||x− y||22 +
ρ

2
||Bx− zk + uk||22

)
zk+1 = argmin

z∈Rm

(
||z||1 +

ρ

2
||Bxk+1 − z+ uk||22

)
uk+1 = uk + (Bxk+1 − zk+1).

Extension to SDDs

• Let G = U>ΛU = A(p) + A(n) + D(1) + D(2) be an symmetric diagonally
dominant matrix where D(1)

i,i =
∑
i6=j Gi,j and D

(2)
i,i = Gi,i − D(1)

i,i .
• Construct the graph Laplacians:

L1 = D(1) + A(n) − A(p)/2 = U>
1 Λ1U1

L2 =
[
D(1) + A(n) + D(2)/2 −D(2)/2− A(p)

−D(2)/2− A(p) D(1) + A(n) + D(2)/2

]

• The eigenvectors of L2 are U2 =
[
U U1

−U U1

]
• The eigenvalues of L2 are λ2 = λ1 ∪ λ

Cross-Validation for GTR

• The leave-one-out cross-validation for graph Tikhonov regularization boils
down to:

LOOCV(q) = 1
n

 n∑
i=1

yi − x̂i
1− Ki,i

2

.

• The generalized CV approximation is:

GCV(q) = 1
N

 n∑
i=1

yi − x̂i
1− (tr(K)/n)

2

.

References i

Alev, Vedat Levi et al. (2017). “Graph clustering using effective resistance”. In: arXiv
preprint arXiv:1711.06530.

Avena, Luca et al. (2018). “Random forests and networks analysis”. In: Journal of
Statistical Physics 173.3, pp. 985–1027.

Barthelme, Simon et al. (Aug. 2019). “Estimating the inverse trace using random
forests on graphs”. In: GRETSI 2019 - XXVIIème Colloque francophone de
traitement du signal et des images. Lille, France. url:
https://hal.archives-ouvertes.fr/hal-02319194.

Ghosh, Arpita et al. (2008). “Minimizing effective resistance of a graph”. In: SIAM
review 50.1, pp. 37–66.

https://hal.archives-ouvertes.fr/hal-02319194

References ii

Hayashi, Takanori et al. (2016). “Efficient Algorithms for Spanning Tree Centrality.”.
In: IJCAI. Vol. 16, pp. 3733–3739.

Marchal, Philippe (2000). “Loop-erased random walks, spanning trees and
Hamiltonian cycles”. In: Electronic Communications in Probability 5, pp. 39–50.

Peng, Pan et al. (2021). “Local Algorithms for Estimating Effective Resistance”. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1329–1338.

Pilavci, Yusuf Y et al. (2020). “Smoothing graph signals via random spanning
forests”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, pp. 5630–5634.

References iii

Pilavci, Yusuf Yigit et al. (Sept. 2022). “Variance Reduction for Inverse Trace
Estimation via Random Spanning Forests”. In: GRETSI 2022 - XXVIIIème Colloque
Francophone de Traitement du Signal et des Images. Nancy, France.

Pilavcı, Yusuf Yigit et al. (2022). “Variance Reduction in Stochastic Methods for
Large-Scale Regularized Least-Squares Problems”. In: 2022 30th European Signal
Processing Conference (EUSIPCO). IEEE, pp. 1771–1775.

Pilavcı, Yusuf Yiğit et al. (2021). “Graph tikhonov regularization and interpolation
via random spanning forests”. In: IEEE transactions on Signal and Information
Processing over Networks 7, pp. 359–374.

Spielman, Daniel A and Nikhil Srivastava (2011). “Graph sparsification by effective
resistances”. In: SIAM Journal on Computing 40.6, pp. 1913–1926.

References iv

Spielman, Daniel A and Shang-Hua Teng (2004). “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems”. In:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pp. 81–90.

Wang, Xiangrong et al. (2014). “Improving robustness of complex networks via the
effective graph resistance”. In: The European Physical Journal B 87.9, pp. 1–12.

Wilson, David Bruce (1996). “Generating random spanning trees more quickly than
the cover time”. In: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pp. 296–303.

	Random Spanning Forests (RSF)
	RSF-based Algorithms
	Conclusion
	Appendix

