Wilson's Algorithm for Randomized Linear Algebra

Yusuf Yigit Pilavcl

Advisors:
Pierre-Olivier Amblard
Simon Barthelmé
Nicolas Tremblay
15/11/2022



WHAT'S INSIDE?

Graph Theory

My PhD

Linear Algebra Random}?roc}esses

m -H;___:’
~_ S

2/44



GRAPHS ARE UBIQUITOUS...

3/44



GRAPHS ARE UBIQUITOUS...

Road Networks

3/44



GRAPHS ARE UBIQUITOUS...

Road Networks Social Networks

3/44



GRAPHS ARE UBIQUITOUS...

Road Networks Social Networks Internet

3/44



n
=
=
O
o
Q
>
(WE]
[
<
)
T
a
<
4
o

Social Networks Internet Brain Networks

Road Networks

3/44



GRAPHS ARE UBIQUITOUS...

Road Networks Social Networks Internet Brain Networks

3/44

Point Clouds Networks



GRAPHS ARE UBIQUITOUS...

Road Networks Social Networks Internet Brain Networks

3/44

Point Clouds Networks Molecule Networks



GRAPHS ARE UBIQUITOUS...

Social Networks Brain Networks

3/44

Point Clouds Networks Molecule Networks Tonnetz



GRAPHS ARE UBIQUITOUS...

Social Networks Brain Networks

3/44

Point Clouds Networks Molecule Networks Tonnetz



GRAPH RELATED LINEAR ALGEBRA

0.5

G=W,¢&w)

1.5

44



GRAPH RELATED LINEAR ALGEBRA

a b ¢ d
arflo 1 2 05
b | 1 0O 15 0
@ c|2 15 O 0
0.5 dls o 0 o
e Adjacency matrix W
1 2
1.5

G=W,¢&w)

44



GRAPH RELATED LINEAR ALGEBRA

a b ¢ d

arlo 1 2 05 35 0 0 0

b |1 0O 15 0 0 25 0 0

@ c|2 15 0 0 0 0 35 0

0.5 dlos5 0o 0 o0 0 0 0 05

(a) Adjacency matrix W Degree matrix D
1 2
1.5
G=MW,&w)

44



GRAPH RELATED LINEAR ALGEBRA

a b ¢ d
arlo 1 2 05 35 0 0 0
b |1 0O 15 0 0 25 0 0
@ c|2 15 0 0 0 0 35 0
0.5 dlos5 0o 0 o0 0 0 0 05
(a) Adjacency matrix W Degree matrix D
1 2
1'5 35 -1 -2 -05
-1 25 <15 0
G=(V,Ew)

-2 15 35 0
-05 0 0 05

Laplacian matrix
L=D-W 444



THE GRAPH LAPLACIAN IS UBIQUITOUS...

5/44



THE GRAPH LAPLACIAN IS UBIQUITOUS...

Theory

- Connectivity Analysis

- Graph Partitioning

- Spanning Trees

- Random Walks (Loop-Erased)...

5/44



THE GRAPH LAPLACIAN IS UBIQUITOUS...

s ~

) Applications

Theory ) _
. , - Graph Signal Processing
- Connectivity Analysis , ,
o - Machine learning
- Graph Partitioning S
) - Visualization
- Spanning Trees ) )
- Sparsification

- Random Walks (Loop-Erased)... ,
L J - Robustness analysis...

5/44



THE GRAPH LAPLACIAN IS UBIQUITOUS...

( )

2 Applications

Theory ) _
. , - Graph Signal Processing
- Connectivity Analysis , ,
o - Machine learning
- Graph Partitioning S
) - Visualization
- Spanning Trees ) )
- Sparsification
- Random Walks (Loop-Erased)...

L J - Robustness analysis...
- J
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GRAPH SIGNAL SMOOTHING

Original Signal: y: X:

Figure 3: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, &, w),
o . 2 T
X = arg min X5+ X'Lx >0
gminglly — X+ xx .
Fidelity Regularization

where L is the graph Laplacian and x"Lx = > w(i, j)(x; — X;)*.
(i,He& 6/44
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GRAPH SIGNAL SMOOTHING

- The explicit solution to this problem is:

X = Ky with K= q(L+gl)~"

- Besides smoothing, this solution plays a role as building block in solving
many other graph related-problems.

- Direct computation of K requires O(n?) elementary operations due to the
inverse.

- For large n, iterative methods and polynomial approximations are
state-of-the-art.

- For SDD linear systems, there is a growing body of works starting
from (Spielman and Teng 2004).
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INVERSE TRACE ESTIMATION

- Trace is an essential operation:

[tr(A) 1 6TAG J [tr(A_1)— n, o6 AT ]

- How to choose a good value for the hyperparameter q?

- There are several methods such as Akaike’s or Bayesian information criterion,
generalized cross validation or Stein’s unbiased risk estimator.

- Each uses a quantity called the effective degree of freedom which is equal to
tr(K).
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MAIN THEME

- RLA algorithms for Laplacian-based numerical algebra by using Random
Spanning Forests.
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FOREST NOTATIONS

- Given a graph G = (V, &, w), we denote:

- a spanning forest by ¢ and its root set by p(¢),
- the root of vertex i in ¢ by
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s ~

Definition (RSF) , .
A random spanning forest &4 on a graph G is spanning forest selected over all

spanning forests of G according to the following distribution:

P(@q = ¢) o g1 T w(i,j)
()€€

- g > 0 changes the expected number of roots.

15/44



RANDOM SPANNING FORESTS: WHAT, WHY AND HOW?

16/44



RANDOM SPANNING FORESTS: WHAT, WHY AND HOW?

- The random roots p(®q) is a determinantal point process with a marginal
kernel K= g(L+ gl)~" (Avena et al. 2018):

VSCV, P(SCp(Pq)) = detKs.

16/44



RANDOM SPANNING FORESTS: WHAT, WHY AND HOW?

- The random roots p(®q) is a determinantal point process with a marginal
kernel K= g(L+ gl)~" (Avena et al. 2018):

VSCV, P(SCp(Pq)) = detKs.

- Moreover, we have the following identity (Avena et al. 2018):

Vi,jeV, P(rg,(i) =) = Kij.

16/44



RANDOM SPANNING FORESTS: WHAT, WHY AND HOW?

- The random roots p(®q) is a determinantal point process with a marginal
kernel K= g(L+ gl)~" (Avena et al. 2018):

VSCV, P(SCp(Pq)) = detKs.

- Moreover, we have the following identity (Avena et al. 2018):

Vi,jeV, P(rg,(i) =) = Kij.

- There is an efficient algorithm to sample RSFs, called Wilson'’s
algorithm (Wilson 1996).
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RANDOM SPANNING FORESTS: WHAT, WHY AND How?

- Consider an simple random walk on G with the transition rule:

- take a step from i to j with probability ‘g#(’j)

- interrupt at any node i with a probability qud‘.

- The expected number of steps is known:

tr[(L+an (D +al)] < 2]

+ V). 17/44
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- Graph Signal Smoothing
- Trace Estimation

- Estimating Effective Resistances
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- Random partitions are sampled via random spanning forests.
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SMOOTHING VIA FORESTS

Sample Average &
aforest Q Propagate
_—

(.

- Random partitions are sampled via random spanning forests.

- This yields an unbiased estimator X.
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- We compare the algorithms in approximation error (error respect to X) and
reconstruction error (error respect to x)
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GRADIENT DESCENT UPDATE AS CONTROL VARIATE

- The approximation error can be improved by variance reduction.
- The solution x also minimizes:

:
F(x) = ixT K-'x —x"y.

- The gradient descent algorithm draws the following iteration scheme:
X1 = X — aVF(Xy)

where a € R and VF(xy) = K x, —v.
- We propose to apply the gradient descent update on the previous estimator
X:
Zi=Xx—a(K'x-y)

23/44
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PROPERTIES OF THIS ESTIMATOR

- Z is unbiased.
- A matrix-vector product with L is needed only once.
- For certain values of «, we have improved performance.

- The optimal value is:
. tr(Cov(K™'x,X))
“ - tr(Var(K=1x))

- One can either choose a value for o from the safe range (e.g. o = ﬁ) or
estimate from the samples:

2[4t



RANGE OF «

- We empirically compare these options of « over a regular and irregular graph:

Regular Graph Barabasi-Albert Graph
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AN [LLUSTRATION
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CHALLENGES

- Graph Signal Smoothing
- Trace Estimation

- Estimating Effective Resistances
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INVERSE TRACE ESTIMATION: HUTCHINSON'S ESTIMATOR

- A famous algorithm for estimating tr(K) is Hutchinson's estimator:

1 N NT .
hie L5 a0 e
=

where al) € {<1,1}" is a random vector with IP’(aj(i) =+1)=1/2
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INVERSE TRACE ESTIMATION: HUTCHINSON'S ESTIMATOR

- A famous algorithm for estimating tr(K) is Hutchinson's estimator:
N
1 NT .
h=-Yal ka®

where al) € {<1,1}" is a random vector with IP’(aj(i) =+1)=1/2
- Itis an unbiased estimator of tr(K).
- The cumbersome computation here is Ka() for N vectors.
- It can be done via:

- Direct computation via Cholesky decomposition
- (Preconditioned) Iterative solvers
- Algebraic Multigrid solvers
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- Another unbiased estimator is by RSFs (Barthelme et al. 2019):
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FOREST BASED TRACE ESTIMATOR

- Another unbiased estimator is by RSFs (Barthelme et al. 2019):

s = |p(®q)| with E[s] = tr(K)

- This estimator gives an comparable performance with the existing algorithms.

- One can use this estimator in case of symmetric diagonally dominant
matrices instead of the graph Laplacians.
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VARIANCE REDUCTION VIA CONTROL VARIATES

- One can rewrite x = Sy.
- The control variate estimator for K:

(2]
—~
IR
(2]
\
=

- We define the new trace estimator as

wnl
-+
—

—
N

~—

- Asafe value of a is q+2d . We also observe that q+2d is usually a good

estimate of o*.
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VARIANCE REDUCTION VIA STRATIFICATION

- The stratified estimator is:

105 — .
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VARIANCE REDUCTION VIA STRATIFICATION

- The stratified estimator is:

1.0 - .
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X

- P(Y € () is accessible.
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VARIANCE REDUCTION VIA STRATIFICATION

= Y = |p1(®q)| as the number of the roots that are sampled at the first visit.
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COMPARISON WITH HUTCHINSON’S ESTIMATOR

- We compare the time needed by the estimators for reaching a certain
accuracy.
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CHALLENGES

- Graph Signal Smoothing
- Trace Estimation

- Estimating Effective Resistances
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resistor with a resistance m

- The effective resistance between node i and j:

ottt
Rij=Liith— L~k

- The effective conductance:
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ESTIMATING R;j VIA LOCAL FORESTS (LF)

- R is biased but the bias diminishes faster than the variance.
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EXPERIMENTS

- We report the run-time of the local algorithms for approximately the same
relative error.

Algorthm || 15 Mc2  LF(ours)
Dataset
Cora 116 11 2
Citeseer 362 6 1
Pubmed 333 91 12
Collab-CM 82 156 20

Table 1: Runtime (ms) of the local algorithms over benchmark datasets
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LIMITATIONS AND OPEN QUESTIONS

-

|

Limitations
- Restricted to SDDs,

- Not competitive in high
precision regime,

- Sampling at small g,

~

Possible Directions

- Extending other matrices via

Importance Sampling,

- RSFs as Preconditioning,
- Faster sampling algorithms,

Early-stop strategies...

s

Open Questions

p1(®q) is a DPP as well:

P(S € m(®
- What happens between p;(®

a))

q) and p(®

= det Ky with Ky = g(ql + D)~

Ak
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RANDOM SPANNING FORESTS

- For fixed subsets V.C V and S C £ with |V| = |S], one has:

o\ . .
det Bgy = (H(i,j)es W(I,J)) , If Sforms a spanning forest rooted in V
0, otherwise.

- We can count the spanning forests rooted in R C V:

VRCV, detlg= > [[ wij-

deFr (1,))€E
- The root probability can be seen as a ratio of counts:

(=) det(L+ql)_j_j |F|

Ple() =) =Kj =0 iray 17




LOOP-ERASED RANDOM WALKS

Theorem (Law of LERWs (Marchal 2000)) .
A loop-erased random walk LE(W) on G = (V, €, w) that is stopped at the

boundary A C V has the following probability distribution:

det L A
P(LE(W) = 7) = detLU:” T w(.j)
(i,))evy

where v is a fixed path and s(vy) denotes the nodes visited in ~.

& J




GRAPH FILTERING VIA DUPLICATED GRAPH

- The product Ky corresponds to a graph filtering with the transfer function:

8q(A) = m

2

4,

i
.
aa
- The transfer function is paramerized by 6 = (g1, Q2, «, 3):
agi(A+h(0) +qz2) + Baz2(h(X))
(A+h(0) +g1)(A+ h(0) + g2) — h(A)?’

S

- We duplicate the graph and the inputyq = [Z)ﬂ

=

fo(A) =




L1 GRAPH REGULARIZATION

- Another type of regularization is Ly regularization:
* . q 2
X" = argmin —[[x — y||3 + |[Bx[|s
XERN
- Alternating direction of multipliers (ADMM) approximates x* by:
. (9 P
Kt = angmin (3] — B + 2)18x - 2+ ulB)
XER” 2 2

: p
Zy 1 = argmin <HZ|1 + §’|Bxk+1 —Z+ UkH%)
zZERM

Upeq = U + (BXK—H _ ZI<+1)_



EXTENSION TO SDDs

- Let G =UTAU = AP 4 AM 4 DO 4 D@ be an symmetric diagonally
dominant matrix where Di(ji) = > i4 Gij and Di(,zi) =G — Di(ji).
- Construct the graph Laplacians:
Ly =DM + AN —AlP) /2 — UIA1U1

DO+ AM 4 D@ /2 @ /2 — AP
L= —D@ /2 — AP D“) +AM 4 D@2

-U U
- The eigenvalues of Ly are A\, = AU A

. u U
- The eigenvectors of L, are U; = [ 1]



CROSS-VALIDATION FOR GTR

- The leave-one-out cross-validation for graph Tikhonov regularization boils

down to:
1 yl - XI
LOOCV(q . (§ ) .

i=1 II

- The generalized CV approximation is:

2
T (s~ Vi—%
D=y (Z 1—<<>/>) '
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