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Signal Denoising via Smoothing

Given a graph G = (V, &, w), a graph signal is x € RV,
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Signal Denoising via Smoothing

,w), a graph signal is x € RIVI.

Given a graph G = (V,
Smoothed y:
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Tikhonov Regularization

Given a graph G = (V, &, w),

X = arg min
gzeR"q
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% = Ky with K = (L 4 gl) 14l

» Direct computation of K requires O(n®) elementary
operations due to the inverse.
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Tikhonov Regularization

Given a graph G = (V, &, w),

N . 9 -
X = arg min —Z + z' Lz >0
& zeR" qu — ) q
Fidelity Regularization

where L is the graph Laplacian and z"Lz = >~ w(i,j)(z — z)>.
(ij)e€
» The explicit solution to this problem is:

% = Ky with K = (L 4 gl) 14l

» Direct computation of K requires O(n®) elementary
operations due to the inverse.

» For large n, iterative methods and polynomial approximations
are the state-of-the-art. Both compute X in linear time in the
number of edges |£|.
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A few notation

» Given a graph G = (V, &, w), we denote:

R

» a spanning forest as ¢
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A few notation

» Given a graph G = (V, &, w), we denote:

> a spanning forest as ¢ and its root set as p(¢),
> the root of vertex i in ¢ as ry(i) =
> the partition associated to ¢ as m(¢) = {V1,..., Vpe) }-
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Random Spanning Forests

> More than one spanning forest is generally possible:

5
LN R
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Random Spanning Forests

> More than one spanning forest is generally possible:

» Thus, we model them statistically. The probability distribution
of random spanning forests:

P(®q = ¢) q\p(¢)| H w(i,j) (1)

(i)e€s

Pilavci et.al., Graph Signal Smoothing via RSFs

gipsa-lab



Random Spanning Forests

> More than one spanning forest is generally possible:

» Thus, we model them statistically. The probability distribution
of random spanning forests:

P(dg = ¢) o g7 IT w(iJ) (1)
(iJ)€€s
» The computational cost to sample from @4 is O(@)

Pilavci et.al., Graph Signal Smoothing via RSFs

gipsa-lab



Random Spanning Forests

> More than one spanning forest is generally possible:

» Thus, we model them statistically. The probability distribution
of random spanning forests:

P(®q = ¢) q\p(¢)| H w(i,j) (1)

(i)e€s

» The computational cost to sample from @4 is O(@)
» Importantly, the probability of node i rooted at j in ® reads:

P(re,(i) = j) = Kij with K = (L + ql)"'ql
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RSF based Estimators

The first estimator X

» Our first estimator for computing X = Ky is :

(1) = y (ro,(1))

Pilavci et.al., Graph Signal Smoothing via RSFs

gipsa-lab



RSF based Estimators

The first estimator X

» Our first estimator for computing X = Ky is :

(1) = y (ro,(1))

P In practice, we propagate the measurement of the root in each
tree
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RSF based Estimators

An improved estimator X

» An improved estimator :

! > ()

x(i) =
O Dol 2

where Vy(;) gives the vertex set of the tree that includes / in
m(®q).
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Comparison of Estimators

» Both estimators are unbiased: E [%(/)] = E [x(i)] = Ky(/)
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» Both estimators are unbiased: E [%(/)] = E [x(i)] = Ky(/)

» Moreover, the expected error for X(i) :
E[[[x— 2] =y"(1 - K?)y

» The expected error for x(i):

E [|lx - %12 =y7(K - Ky

v

Recalling K = (L + gl)~1gl < 1, we have
E [ %[?] <E|[||x — /2]

M)_

» The complexity for both is O( g
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Comparison of Estimators

» Both estimators are unbiased: E [%(/)] = E [x(i)] = Ky(/)
» Moreover, the expected error for X(i) :
E[[[x— 2] =y"(1 - K?)y
» The expected error for x(i):
E[[[% - %[2] =y (K- K2)y
> Recalling K = (L + gl)"1ql < 1, we have
E [ %[?] <E|[||x — /2]
NIELy,

> The complexity for both is O(=
» Both can be used for computing a more generalized form

% = (Q+L)"'Qy with Q = diag(q1, ..., qn)
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Experiments

Image Denoising
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Experiments

Semi-Supervised Learning for Node Classification

» Problem: Given a few labels over the nodes, infer the others
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M é‘&_m
» Priori knowledge is encoded for /-th class as follows:

yi(i) =

1 if node i belongs to /-th class
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Experiments

Semi-Supervised Learning for Node Classification

» Problem: Given a few labels over the nodes, infer the others

M é‘&_m
» Priori knowledge is encoded for /-th class as follows:

yi(i) =

1 if node i belongs to /-th class
0 if not

» The classification function f; is assumed to be:

» smooth on the graph
> close to y;

Pilavci et.al., Graph Signal Smoothing via RSFs

gipsa-lab



Experiments

Semi-Supervised Learning for Node Classification

» One solution writes:
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Experiments
Semi-Supervised Learning for Node Classification
» One solution writes:
f = D! "KD" 1y, with K = (Q + L) ' Q and Q = gD

» We can run our estimators to compute f;.

» In the experiments, we generate a SBM with 3000 nodes and
two equal-size communities:
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» They scale linearly with the number of edges but also depend
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Conclusion and Future Works

» We propose two Monte Carlo methods for graph signal
smoothing.

» They scale linearly with the number of edges but also depend
on q.

» The links between RSFs and Laplacian-based numerical linear
algebra are promising.
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