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Signal Denoising via Smoothing

Given a graph G = (V, E ,w), a graph signal is x ∈ R|V|.

x: y: Smoothed y:
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Tikhonov Regularization
Given a graph G = (V, E ,w),

x̂ = arg min
z∈Rn

q

||y− z||2︸ ︷︷ ︸
Fidelity

+ zTLz︸ ︷︷ ︸
Regularization

, q > 0

where L is the graph Laplacian and zTLz =
∑

(i ,j)∈E
w(i , j)(zi − zj)2.

I The explicit solution to this problem is:

x̂ = Ky with K = (L + qI)−1qI

I Direct computation of K requires O(n3) elementary
operations due to the inverse.

I For large n, iterative methods and polynomial approximations
are the state-of-the-art. Both compute x̂ in linear time in the
number of edges |E|.
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Spanning Forests, Roots and Partitions

Spanning Tree

Rooted Spanning Tree

Rooted Spanning Forest
Partition
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A few notation

I Given a graph G = (V, E ,w), we denote:

I a spanning forest as φ

and its root set as ρ(φ),
I the root of vertex i in φ as rφ(i) = j
I the partition associated to φ as π(φ) = {V1, . . . ,V|ρ(φ)|}.
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Random Spanning Forests
I More than one spanning forest is generally possible:

. . .

I Thus, we model them statistically. The probability distribution
of random spanning forests:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i ,j)∈Eφ

w(i , j) (1)

I The computational cost to sample from Φq is O( |E|q )
I Importantly, the probability of node i rooted at j in Φq reads:

P(rΦq (i) = j) = Ki ,j with K = (L + qI)−1qI
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RSF based Estimators
The first estimator x̃

I Our first estimator for computing x̂ = Ky is :

x̃(i) = y
(
rΦq (i)

)

I In practice, we propagate the measurement of the root in each
tree

Φq . . .
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RSF based Estimators
An improved estimator x̄

I An improved estimator :

x̄(i) = 1
|Vt(i)|

∑
j∈Vt(i)

y(j)

where Vt(i) gives the vertex set of the tree that includes i in
π(Φq).

I In practice,

Φq . . .
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Comparison of Estimators
I Both estimators are unbiased: E [x̃(i)] = E [x̄(i)] = Ky(i)

I Moreover, the expected error for x̃(i) :

E
[
||x̂− x̃||2

]
= yT (I− K2)y

I The expected error for x̄(i):

E
[
||x̂− x̃||2

]
= yT (K− K2)y

I Recalling K = (L + qI)−1qI � 1, we have

E
[
||x̂− x̄||2

]
≤ E

[
||x̂− x̃||2

]
I The complexity for both is O(N|E|

q ).
I Both can be used for computing a more generalized form

x̂ = (Q + L)−1Qy with Q = diag(q1, . . . , qn)
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Experiments
Image Denoising

x: y:

x̂:

x̃(N = 1): x̄(N = 1): x̃(N = 20): x̄(N = 20):
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Experiments
Image Denoising
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Experiments
Semi-Supervised Learning for Node Classification

I Problem: Given a few labels over the nodes, infer the others

⇒

I Priori knowledge is encoded for l-th class as follows:

yl (i) =
{
1 if node i belongs to l-th class
0 if not

I The classification function fl is assumed to be:
I smooth on the graph
I close to yl

gipsa-lab

Pilavci et.al., Graph Signal Smoothing via RSFs 13/ 15



Experiments
Semi-Supervised Learning for Node Classification

I Problem: Given a few labels over the nodes, infer the others

⇒

I Priori knowledge is encoded for l-th class as follows:

yl (i) =
{
1 if node i belongs to l-th class
0 if not

I The classification function fl is assumed to be:
I smooth on the graph
I close to yl

gipsa-lab

Pilavci et.al., Graph Signal Smoothing via RSFs 13/ 15



Experiments
Semi-Supervised Learning for Node Classification

I Problem: Given a few labels over the nodes, infer the others

⇒

I Priori knowledge is encoded for l-th class as follows:

yl (i) =
{
1 if node i belongs to l-th class
0 if not

I The classification function fl is assumed to be:

I smooth on the graph
I close to yl

gipsa-lab

Pilavci et.al., Graph Signal Smoothing via RSFs 13/ 15



Experiments
Semi-Supervised Learning for Node Classification

I Problem: Given a few labels over the nodes, infer the others

⇒

I Priori knowledge is encoded for l-th class as follows:

yl (i) =
{
1 if node i belongs to l-th class
0 if not

I The classification function fl is assumed to be:
I smooth on the graph

I close to yl

gipsa-lab

Pilavci et.al., Graph Signal Smoothing via RSFs 13/ 15



Experiments
Semi-Supervised Learning for Node Classification

I Problem: Given a few labels over the nodes, infer the others

⇒

I Priori knowledge is encoded for l-th class as follows:

yl (i) =
{
1 if node i belongs to l-th class
0 if not

I The classification function fl is assumed to be:
I smooth on the graph
I close to yl

gipsa-lab

Pilavci et.al., Graph Signal Smoothing via RSFs 13/ 15



Experiments
Semi-Supervised Learning for Node Classification

I One solution writes:

fl = D1−σKDσ−1yl with K = (Q + L)−1 Q and Q = µ

2D

I We can run our estimators to compute fl .
I In the experiments, we generate a SBM with 3000 nodes and

two equal-size communities:

Strong Connections Weak Connections
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Conclusion and Future Works

I We propose two Monte Carlo methods for graph signal
smoothing.

I They scale linearly with the number of edges but also depend
on q.

I The links between RSFs and Laplacian-based numerical linear
algebra are promising.
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