
Grenoble | images | parole | signal | automatique | laboratoire

UMR 5216

Variance Reduction for Inverse
Trace Estimation via Random
Spanning Forests

Yusuf Yiğit Pilavcı*
Pierre-Olivier Amblard
Simon Barthelmé
Nicolas Tremblay
07/09/2022

Introduction

I Trace is an essential algebraic operation.

I In many applications, tr(f (L)) is the quantity of interest for a
given matrix L.

I However, it is not always easy to compute...
I In this work, we focus on

f (L) = q(L + qI)−1,

where q > 0 and L is symmetric and diagonally
dominant i.e. ∀i ∈ V,

∑n
j=1 |Li ,j | ≤ |Li ,i |.

gipsa-lab

1, 2/ 13

Introduction

I Trace is an essential algebraic operation.
I In many applications, tr(f (L)) is the quantity of interest for a

given matrix L.

I However, it is not always easy to compute...
I In this work, we focus on

f (L) = q(L + qI)−1,

where q > 0 and L is symmetric and diagonally
dominant i.e. ∀i ∈ V,

∑n
j=1 |Li ,j | ≤ |Li ,i |.

gipsa-lab

1, 2/ 13

Introduction

I Trace is an essential algebraic operation.
I In many applications, tr(f (L)) is the quantity of interest for a

given matrix L.
I However, it is not always easy to compute...

I In this work, we focus on

f (L) = q(L + qI)−1,

where q > 0 and L is symmetric and diagonally
dominant i.e. ∀i ∈ V,

∑n
j=1 |Li ,j | ≤ |Li ,i |.

gipsa-lab

1, 2/ 13

Introduction

I Trace is an essential algebraic operation.
I In many applications, tr(f (L)) is the quantity of interest for a

given matrix L.
I However, it is not always easy to compute...
I In this work, we focus on

f (L) = q(L + qI)−1,

where q > 0 and L is symmetric and diagonally
dominant i.e. ∀i ∈ V,

∑n
j=1 |Li ,j | ≤ |Li ,i |.

gipsa-lab

1, 2/ 13

Hyperparameter Selection for Graph Signal Smoothing
Original Signal: y:

x̂:

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||2︸ ︷︷ ︸
Fidelity

+ xTLx︸ ︷︷ ︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i ,j)∈E
w(i , j)(xi − xj)2.

gipsa-lab

1, 3/ 13

Hyperparameter Selection for Graph Signal Smoothing
Original Signal: y: x̂:

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||2︸ ︷︷ ︸
Fidelity

+ xTLx︸ ︷︷ ︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i ,j)∈E
w(i , j)(xi − xj)2.

gipsa-lab

1, 3/ 13

Hyperparameter Selection for Graph Signal Smoothing
Original Signal: y: x̂:

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||2︸ ︷︷ ︸
Fidelity

+ xTLx︸ ︷︷ ︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i ,j)∈E
w(i , j)(xi − xj)2.

gipsa-lab

1, 3/ 13

Graph Signal Smoothing

I The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

I The denoising error ||x− x̂||22 highly depends on q.
I Many methods of finding good value of q needs to compute

tr(K).
I However, computing the inverse takes O(n3) operations.

gipsa-lab

1, 4/ 13

Graph Signal Smoothing

I The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

I The denoising error ||x− x̂||22 highly depends on q.

I Many methods of finding good value of q needs to compute
tr(K).

I However, computing the inverse takes O(n3) operations.

gipsa-lab

1, 4/ 13

Graph Signal Smoothing

I The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

I The denoising error ||x− x̂||22 highly depends on q.
I Many methods of finding good value of q needs to compute

tr(K).

I However, computing the inverse takes O(n3) operations.

gipsa-lab

1, 4/ 13

Graph Signal Smoothing

I The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

I The denoising error ||x− x̂||22 highly depends on q.
I Many methods of finding good value of q needs to compute

tr(K).
I However, computing the inverse takes O(n3) operations.

gipsa-lab

1, 4/ 13

Inverse Trace Estimation: Random Spanning Forests

I A recent algorithm is based on random spanning forests on
graphs [Bar+19].

I A rooted spanning forest on a graph:

A rooted spanning forest

I Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

I For a particular distribution [AG13], we have useful links with
graph-related algebra.

gipsa-lab

1, 5/ 13

Inverse Trace Estimation: Random Spanning Forests

I A recent algorithm is based on random spanning forests on
graphs [Bar+19].

I A rooted spanning forest on a graph:

A rooted spanning forest

I Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

I For a particular distribution [AG13], we have useful links with
graph-related algebra.

gipsa-lab

1, 5/ 13

Inverse Trace Estimation: Random Spanning Forests

I A recent algorithm is based on random spanning forests on
graphs [Bar+19].

I A rooted spanning forest on a graph:

A rooted spanning forest

I Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

I For a particular distribution [AG13], we have useful links with
graph-related algebra.

gipsa-lab

1, 5/ 13

Inverse Trace Estimation: Random Spanning Forests

I A recent algorithm is based on random spanning forests on
graphs [Bar+19].

I A rooted spanning forest on a graph:

A rooted spanning forest

I Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

I For a particular distribution [AG13], we have useful links with
graph-related algebra.

gipsa-lab

1, 5/ 13

Inverse Trace Estimation: Random Spanning Forests

I [Bar+19] propose to estimate tr(K) by the number of roots in
RSFs, denoted by s.

I It is an unbiased estimator with a tractable variance:

E[s] = tr(K) with Var(s) = tr(K− K2).

I Empirical results shows that is comparable with Girard’s
estimator.

I In this work, we give two ways of improving this estimator.

gipsa-lab

1, 6/ 13

Inverse Trace Estimation: Random Spanning Forests

I [Bar+19] propose to estimate tr(K) by the number of roots in
RSFs, denoted by s.

I It is an unbiased estimator with a tractable variance:

E[s] = tr(K) with Var(s) = tr(K− K2).

I Empirical results shows that is comparable with Girard’s
estimator.

I In this work, we give two ways of improving this estimator.

gipsa-lab

1, 6/ 13

Inverse Trace Estimation: Random Spanning Forests

I [Bar+19] propose to estimate tr(K) by the number of roots in
RSFs, denoted by s.

I It is an unbiased estimator with a tractable variance:

E[s] = tr(K) with Var(s) = tr(K− K2).

I Empirical results shows that is comparable with Girard’s
estimator.

I In this work, we give two ways of improving this estimator.

gipsa-lab

1, 6/ 13

Inverse Trace Estimation: Random Spanning Forests

I [Bar+19] propose to estimate tr(K) by the number of roots in
RSFs, denoted by s.

I It is an unbiased estimator with a tractable variance:

E[s] = tr(K) with Var(s) = tr(K− K2).

I Empirical results shows that is comparable with Girard’s
estimator.

I In this work, we give two ways of improving this estimator.

gipsa-lab

1, 6/ 13

Gradient Descent Update as Control Variate
I Estimation of K can be considered as minimizing the loss

following function:

L(S) = tr
(1
2S
>K−1S− S

)

I The gradient descent algorithm draws the following iteration:
Sk+1 = Sk − α(K−1Sk − I).

where α is the update size.
I In [Pil+21b], we give two unbiased estimators S̃ and S̄.
I Then, we improve them as follows [Pil+21a]:

Z̃ := S̃− α(K−1S̃− I)
Z̄ := S̄− α(K−1S̄− I)

I Focusing on the trace, we define s̃ := tr(Z̃) and s̄ := tr(Z̄).

gipsa-lab

1, 7/ 13

Gradient Descent Update as Control Variate
I Estimation of K can be considered as minimizing the loss

following function:

L(S) = tr
(1
2S
>K−1S− S

)
I The gradient descent algorithm draws the following iteration:

Sk+1 = Sk − α(K−1Sk − I).
where α is the update size.

I In [Pil+21b], we give two unbiased estimators S̃ and S̄.

I Then, we improve them as follows [Pil+21a]:
Z̃ := S̃− α(K−1S̃− I)
Z̄ := S̄− α(K−1S̄− I)

I Focusing on the trace, we define s̃ := tr(Z̃) and s̄ := tr(Z̄).

gipsa-lab

1, 7/ 13

Gradient Descent Update as Control Variate
I Estimation of K can be considered as minimizing the loss

following function:

L(S) = tr
(1
2S
>K−1S− S

)
I The gradient descent algorithm draws the following iteration:

Sk+1 = Sk − α(K−1Sk − I).
where α is the update size.

I In [Pil+21b], we give two unbiased estimators S̃ and S̄.
I Then, we improve them as follows [Pil+21a]:

Z̃ := S̃− α(K−1S̃− I)
Z̄ := S̄− α(K−1S̄− I)

I Focusing on the trace, we define s̃ := tr(Z̃) and s̄ := tr(Z̄).

gipsa-lab

1, 7/ 13

Gradient Descent Update as Control Variate
I Estimation of K can be considered as minimizing the loss

following function:

L(S) = tr
(1
2S
>K−1S− S

)
I The gradient descent algorithm draws the following iteration:

Sk+1 = Sk − α(K−1Sk − I).
where α is the update size.

I In [Pil+21b], we give two unbiased estimators S̃ and S̄.
I Then, we improve them as follows [Pil+21a]:

Z̃ := S̃− α(K−1S̃− I)
Z̄ := S̄− α(K−1S̄− I)

I Focusing on the trace, we define s̃ := tr(Z̃) and s̄ := tr(Z̄).

gipsa-lab

1, 7/ 13

Properties of these estimators
I Both s̃ and s̄ are unbiased.

I Additional computations are at time complexity O(|E|) per
sample.

I For certain values of α, we have improved theoretical
performance i.e. Var(s) ≥ Var(s̃) ≥ Var(s̄).

I For example, the optimal value of α for s̄ is:

α? = Cov(s, tr(K−1S̄− I))
Var(tr(K−1S̄− I))

.

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = Ĉov(s, tr(K−1S̄− I))
V̂ar(tr(K−1S̄− I))

.

gipsa-lab

1, 8/ 13

Properties of these estimators
I Both s̃ and s̄ are unbiased.
I Additional computations are at time complexity O(|E|) per

sample.

I For certain values of α, we have improved theoretical
performance i.e. Var(s) ≥ Var(s̃) ≥ Var(s̄).

I For example, the optimal value of α for s̄ is:

α? = Cov(s, tr(K−1S̄− I))
Var(tr(K−1S̄− I))

.

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = Ĉov(s, tr(K−1S̄− I))
V̂ar(tr(K−1S̄− I))

.

gipsa-lab

1, 8/ 13

Properties of these estimators
I Both s̃ and s̄ are unbiased.
I Additional computations are at time complexity O(|E|) per

sample.
I For certain values of α, we have improved theoretical

performance i.e. Var(s) ≥ Var(s̃) ≥ Var(s̄).

I For example, the optimal value of α for s̄ is:

α? = Cov(s, tr(K−1S̄− I))
Var(tr(K−1S̄− I))

.

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = Ĉov(s, tr(K−1S̄− I))
V̂ar(tr(K−1S̄− I))

.

gipsa-lab

1, 8/ 13

Properties of these estimators
I Both s̃ and s̄ are unbiased.
I Additional computations are at time complexity O(|E|) per

sample.
I For certain values of α, we have improved theoretical

performance i.e. Var(s) ≥ Var(s̃) ≥ Var(s̄).
I For example, the optimal value of α for s̄ is:

α? = Cov(s, tr(K−1S̄− I))
Var(tr(K−1S̄− I))

.

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = Ĉov(s, tr(K−1S̄− I))
V̂ar(tr(K−1S̄− I))

.

gipsa-lab

1, 8/ 13

Properties of these estimators
I Both s̃ and s̄ are unbiased.
I Additional computations are at time complexity O(|E|) per

sample.
I For certain values of α, we have improved theoretical

performance i.e. Var(s) ≥ Var(s̃) ≥ Var(s̄).
I For example, the optimal value of α for s̄ is:

α? = Cov(s, tr(K−1S̄− I))
Var(tr(K−1S̄− I))

.

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = Ĉov(s, tr(K−1S̄− I))
V̂ar(tr(K−1S̄− I))

.

gipsa-lab

1, 8/ 13

Variance Reduction via Stratification

I Consider a random variable Y with an outcome set
Ω = ∪K

k=1Ck .

I We assume:
I P(Y ∈ Ck) is accessible,
I s|Y ∈ Ck is easy to sample.

I Then the stratified sampling takes the following form:

sst :=
K∑

k=1

 1
Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

I For certain allocations Nk ’s, sst has a reduced variance.
I We find a such random variable Y in RSFs!

gipsa-lab

1, 9/ 13

Variance Reduction via Stratification

I Consider a random variable Y with an outcome set
Ω = ∪K

k=1Ck .
I We assume:

I P(Y ∈ Ck) is accessible,
I s|Y ∈ Ck is easy to sample.

I Then the stratified sampling takes the following form:

sst :=
K∑

k=1

 1
Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

I For certain allocations Nk ’s, sst has a reduced variance.
I We find a such random variable Y in RSFs!

gipsa-lab

1, 9/ 13

Variance Reduction via Stratification

I Consider a random variable Y with an outcome set
Ω = ∪K

k=1Ck .
I We assume:

I P(Y ∈ Ck) is accessible,
I s|Y ∈ Ck is easy to sample.

I Then the stratified sampling takes the following form:

sst :=
K∑

k=1

 1
Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

I For certain allocations Nk ’s, sst has a reduced variance.
I We find a such random variable Y in RSFs!

gipsa-lab

1, 9/ 13

Variance Reduction via Stratification

I Consider a random variable Y with an outcome set
Ω = ∪K

k=1Ck .
I We assume:

I P(Y ∈ Ck) is accessible,
I s|Y ∈ Ck is easy to sample.

I Then the stratified sampling takes the following form:

sst :=
K∑

k=1

 1
Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

I For certain allocations Nk ’s, sst has a reduced variance.

I We find a such random variable Y in RSFs!

gipsa-lab

1, 9/ 13

Variance Reduction via Stratification

I Consider a random variable Y with an outcome set
Ω = ∪K

k=1Ck .
I We assume:

I P(Y ∈ Ck) is accessible,
I s|Y ∈ Ck is easy to sample.

I Then the stratified sampling takes the following form:

sst :=
K∑

k=1

 1
Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

I For certain allocations Nk ’s, sst has a reduced variance.
I We find a such random variable Y in RSFs!

gipsa-lab

1, 9/ 13

Comparison with SOTA

I We compare the proposed algorithms with Hutchinson’s
estimator combined with several linear solvers.

10 1

tr(K)/n
10 3

10 2

10 1

100

101

Ef
fe

ct
iv

e
Ru

nt
im

e
(s

ec
.) Collab-CM

10 1

tr(K)/n

10 2

10 1

100

101

Amazon

direct
amg

pcg
cg

rsf
s

s
sst

Figure: Effective Runtime vs tr(K)/n.

gipsa-lab

1, 10/ 13

Conclusion

I Random spanning forests are useful for randomized linear
algebra involving SDD matrices.

I We propose two ways of improving the forest-based trace
estimator.

I We validate these methods over real-life datasets.
I We hope to extend these results for estimating other

Laplacian-based quantities, such as effective resistances.

gipsa-lab

1, 11/ 13

Conclusion

I Random spanning forests are useful for randomized linear
algebra involving SDD matrices.

I We propose two ways of improving the forest-based trace
estimator.

I We validate these methods over real-life datasets.
I We hope to extend these results for estimating other

Laplacian-based quantities, such as effective resistances.

gipsa-lab

1, 11/ 13

Conclusion

I Random spanning forests are useful for randomized linear
algebra involving SDD matrices.

I We propose two ways of improving the forest-based trace
estimator.

I We validate these methods over real-life datasets.

I We hope to extend these results for estimating other
Laplacian-based quantities, such as effective resistances.

gipsa-lab

1, 11/ 13

Conclusion

I Random spanning forests are useful for randomized linear
algebra involving SDD matrices.

I We propose two ways of improving the forest-based trace
estimator.

I We validate these methods over real-life datasets.
I We hope to extend these results for estimating other

Laplacian-based quantities, such as effective resistances.

gipsa-lab

1, 11/ 13

References
Luca Avena and Alexandre Gaudillière. “Random
spanning forests, Markov matrix spectra and well
distributed points”. In: arXiv preprint arXiv:1310.1723
(2013).
Simon Barthelmé et al. “Estimating the inverse trace
using random forests on graphs”. In: arXiv preprint
arXiv:1905.02086 (2019).
Yusuf Pilavcı et al. “Variance reduction in stochastic
methods for large-scale regularised least-squares
problems”. In: arXiv preprint arXiv:2110.07894 (2021).
Yusuf Yiğit Pilavcı et al. “Graph tikhonov
regularization and interpolation via random spanning
forests”. In: IEEE transactions on Signal and
Information Processing over Networks 7 (2021),
pp. 359–374.

gipsa-lab

1, 12/ 13

Questions

If you are hiring post-docs, scan me!

Thanks! Questions?

gipsa-lab

1, 13/ 13

Estimating K with Forests

I We previously proposed two estimators for K [Pil+21b]:

1

2

4

3

2

4

S̃ =

1 2 3 4


1 0 1 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1

S̄ =

1 2 3 4


1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 0 0 1/2 1/2
4 0 0 1/2 1/2

I Both are unbiased with tractable variances.

gipsa-lab

1, 14/ 13

Estimating K with Forests

I We previously proposed two estimators for K [Pil+21b]:

1

2

4

3

2

4

S̃ =

1 2 3 4


1 0 1 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1

S̄ =

1 2 3 4


1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 0 0 1/2 1/2
4 0 0 1/2 1/2

I Both are unbiased with tractable variances.

gipsa-lab

1, 14/ 13

Estimating K with Forests

I We previously proposed two estimators for K [Pil+21b]:

1

2

4

3

2

4

S̃ =

1 2 3 4


1 0 1 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1

S̄ =

1 2 3 4


1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 0 0 1/2 1/2
4 0 0 1/2 1/2

I Both are unbiased with tractable variances.

gipsa-lab

1, 14/ 13

Estimating K with Forests

I We previously proposed two estimators for K [Pil+21b]:

1

2

4

3

2

4

S̃ =

1 2 3 4


1 0 1 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1

S̄ =

1 2 3 4


1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 0 0 1/2 1/2
4 0 0 1/2 1/2

I Both are unbiased with tractable variances.

gipsa-lab

1, 14/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)

I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

ω1,5ω2

ω3 ω4

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

ω1

ω2

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:

I s ′ ∼
∑n

i=1 Ber
(

q
q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)

I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Variance Reduction via Stratification

I The algorithm for sampling RSFs works in the following way:

I We choose our stratification variable Y = s ′ as the number of
roots sampled at the first sight:
I s ′ ∼

∑n
i=1 Ber

(
q

q+di

)
I Sampling RSFs given s ′ ∈ Ck is easy.

gipsa-lab

1, 15/ 13

Inverse Trace Estimation: Hutchinson’s Estimator

I SOTA for estimating tr(K) is Hutchinson’s estimator []:

h := 1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with
P(a(i)

j = ±1) = 1/2.

I It is an unbiased estimator of tr(K).
I The cumbersome computation here is Ka(i) for N vectors.
I It can be done via:

I Direct computation via Cholesky decomposition
I (Preconditioned) Iterative solvers
I Algebraic Multigrid solvers
I ...

gipsa-lab

1, 16/ 13

Inverse Trace Estimation: Hutchinson’s Estimator

I SOTA for estimating tr(K) is Hutchinson’s estimator []:

h := 1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with
P(a(i)

j = ±1) = 1/2.
I It is an unbiased estimator of tr(K).

I The cumbersome computation here is Ka(i) for N vectors.
I It can be done via:

I Direct computation via Cholesky decomposition
I (Preconditioned) Iterative solvers
I Algebraic Multigrid solvers
I ...

gipsa-lab

1, 16/ 13

Inverse Trace Estimation: Hutchinson’s Estimator

I SOTA for estimating tr(K) is Hutchinson’s estimator []:

h := 1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with
P(a(i)

j = ±1) = 1/2.
I It is an unbiased estimator of tr(K).
I The cumbersome computation here is Ka(i) for N vectors.

I It can be done via:
I Direct computation via Cholesky decomposition
I (Preconditioned) Iterative solvers
I Algebraic Multigrid solvers
I ...

gipsa-lab

1, 16/ 13

Inverse Trace Estimation: Hutchinson’s Estimator

I SOTA for estimating tr(K) is Hutchinson’s estimator []:

h := 1
N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with
P(a(i)

j = ±1) = 1/2.
I It is an unbiased estimator of tr(K).
I The cumbersome computation here is Ka(i) for N vectors.
I It can be done via:

I Direct computation via Cholesky decomposition
I (Preconditioned) Iterative solvers
I Algebraic Multigrid solvers
I ...

gipsa-lab

1, 16/ 13

	References
	Appendix

