

Grenoble | images | parole | signal | automatique | laboratoire

Variance Reduction for Inverse Trace Estimation via Random Spanning Forests

Yusuf Yiğit Pilavcı* Pierre-Olivier Amblard Simon Barthelmé Nicolas Tremblay

07/09/2022

► Trace is an essential algebraic operation.

- ► Trace is an essential algebraic operation.
- In many applications, tr(f(L)) is the quantity of interest for a given matrix L.

- ► Trace is an essential algebraic operation.
- ▶ In many applications, tr(f(L)) is the quantity of interest for a given matrix L.
- However, it is not always easy to compute...

- Trace is an essential algebraic operation.
- ▶ In many applications, tr(f(L)) is the quantity of interest for a given matrix L.
- However, it is not always easy to compute...
- In this work, we focus on

$$f(\mathsf{L}) = q(\mathsf{L} + q\mathsf{I})^{-1},$$

where q > 0 and L is symmetric and diagonally dominant *i.e.* $\forall i \in \mathcal{V}$, $\sum_{i=1}^{n} |\mathsf{L}_{i,i}| \leq |\mathsf{L}_{i,i}|$.

Hyperparameter Selection for Graph Signal Smoothing

Original Signal: y:

Hyperparameter Selection for Graph Signal Smoothing

Figure: Median taxi fees paid in drop-off locations in NYC

Hyperparameter Selection for Graph Signal Smoothing

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$$
,
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} q \underbrace{||\mathbf{y} - \mathbf{x}||^2}_{\text{Fidelity}} + \underbrace{\mathbf{x}^T \mathbf{L} \mathbf{x}}_{\text{Regularization}}, \quad q > 0$$

where L is the graph Laplacian and $\mathbf{x}^T \mathsf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}_{i,j}, i \in \mathcal{E}_{i,j}, j \in \mathcal{E}_{i,j}} w(i,j) (x_i - x_j)^2$.

► The explicit solution to this problem is:

$$\hat{\mathbf{x}} = \mathsf{K}\mathbf{y}$$
 with $\mathsf{K} = q(\mathsf{L} + q\mathsf{I})^{-1}$

► The explicit solution to this problem is:

$$\hat{\mathbf{x}} = \mathsf{K}\mathbf{y}$$
 with $\mathsf{K} = q(\mathsf{L} + q\mathsf{I})^{-1}$

► The denoising error $||\mathbf{x} - \hat{\mathbf{x}}||_2^2$ highly depends on q.

► The explicit solution to this problem is:

$$\hat{\mathbf{x}} = \mathsf{K}\mathbf{y}$$
 with $\mathsf{K} = q(\mathsf{L} + q\mathsf{I})^{-1}$

- ► The denoising error $||\mathbf{x} \hat{\mathbf{x}}||_2^2$ highly depends on q.
- Many methods of finding good value of q needs to compute tr(K).

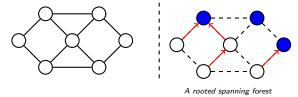
► The explicit solution to this problem is:

$$\hat{\mathbf{x}} = \mathsf{K}\mathbf{y}$$
 with $\mathsf{K} = q(\mathsf{L} + q\mathsf{I})^{-1}$

- ► The denoising error $||\mathbf{x} \hat{\mathbf{x}}||_2^2$ highly depends on q.
- Many methods of finding good value of q needs to compute tr(K).
- ▶ However, computing the inverse takes $\mathcal{O}(n^3)$ operations.

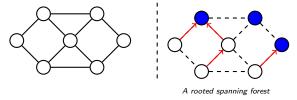
► A recent algorithm is based on *random spanning forests* on graphs [Bar+19].

- ► A recent algorithm is based on *random spanning forests* on graphs [Bar+19].
- A rooted spanning forest on a graph:



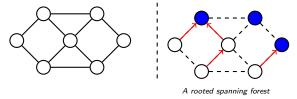
5/13

- ► A recent algorithm is based on *random spanning forests* on graphs [Bar+19].
- A rooted spanning forest on a graph:



Random spanning forests is the process of randomly selecting a spanning forest over all possible forests.

- ▶ A recent algorithm is based on random spanning forests on graphs [Bar+19].
- A rooted spanning forest on a graph:



- Random spanning forests is the process of randomly selecting a spanning forest over all possible forests.
- ► For a particular distribution [AG13], we have useful links with graph-related algebra.

▶ [Bar+19] propose to estimate tr(K) by the number of roots in RSFs, denoted by s.

- ▶ [Bar+19] propose to estimate tr(K) by the number of roots in RSFs, denoted by s.
- It is an unbiased estimator with a tractable variance:

$$\mathbb{E}[s] = \operatorname{tr}(K) \text{ with } \operatorname{Var}(s) = \operatorname{tr}(K - K^2).$$

- ▶ [Bar+19] propose to estimate tr(K) by the number of roots in RSFs, denoted by s.
- It is an unbiased estimator with a tractable variance:

$$\mathbb{E}[s] = \operatorname{tr}(K) \text{ with } \operatorname{Var}(s) = \operatorname{tr}(K - K^2).$$

Empirical results shows that is comparable with Girard's estimator.

- ► [Bar+19] propose to estimate tr(K) by the number of roots in RSFs, denoted by s.
- ▶ It is an unbiased estimator with a tractable variance:

$$\mathbb{E}[s] = \operatorname{tr}(K) \text{ with } \operatorname{Var}(s) = \operatorname{tr}(K - K^2).$$

- Empirical results shows that is comparable with Girard's estimator.
- In this work, we give two ways of improving this estimator.

Estimation of K can be considered as minimizing the loss following function:

$$L(S) = \operatorname{tr}\left(\frac{1}{2}S^{\top}K^{-1}S - S\right)$$

Estimation of K can be considered as minimizing the loss following function:

$$L(S) = \operatorname{tr}\left(\frac{1}{2}S^{\top}K^{-1}S - S\right)$$

► The gradient descent algorithm draws the following iteration:

$$\mathsf{S}_{k+1} = \mathsf{S}_k - \alpha(\mathsf{K}^{-1}\mathsf{S}_k - \mathsf{I}).$$

where α is the update size.

▶ In [Pil+21b], we give two unbiased estimators \tilde{S} and \bar{S} .

► Estimation of K can be considered as minimizing the loss following function:

$$L(S) = \operatorname{tr}\left(\frac{1}{2}S^{\top}K^{-1}S - S\right)$$

▶ The gradient descent algorithm draws the following iteration:

$$\mathsf{S}_{k+1} = \mathsf{S}_k - \alpha(\mathsf{K}^{-1}\mathsf{S}_k - \mathsf{I}).$$

where α is the update size.

- ▶ In [Pil+21b], we give two unbiased estimators \tilde{S} and \bar{S} .
- ▶ Then, we improve them as follows [Pil+21a]:

$$\tilde{\mathsf{Z}} := \tilde{\mathsf{S}} - \alpha(\mathsf{K}^{-1}\tilde{\mathsf{S}} - \mathsf{I})$$

$$\bar{\mathsf{Z}} \coloneqq \bar{\mathsf{S}} - \alpha(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I})$$

4□ > 4周 > 4 = > 4 = > = |= 900

Estimation of K can be considered as minimizing the loss following function:

$$L(S) = \operatorname{tr}\left(\frac{1}{2}S^{\top}K^{-1}S - S\right)$$

► The gradient descent algorithm draws the following iteration:

$$\mathsf{S}_{k+1} = \mathsf{S}_k - \alpha(\mathsf{K}^{-1}\mathsf{S}_k - \mathsf{I}).$$

where α is the update size.

- ▶ In [Pil+21b], we give two unbiased estimators \tilde{S} and \bar{S} .
- ▶ Then, we improve them as follows [Pil+21a]:

$$\tilde{\mathsf{Z}} \coloneqq \tilde{\mathsf{S}} - \alpha(\mathsf{K}^{-1}\tilde{\mathsf{S}} - \mathsf{I})$$

$$\bar{\mathsf{Z}} \coloneqq \bar{\mathsf{S}} - \alpha(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I})$$

▶ Focusing on the trace, we define $\tilde{s} := \text{tr}(\tilde{Z})$ and $\bar{s} := \text{tr}(\bar{Z})$.

ightharpoonup Both \tilde{s} and \bar{s} are unbiased.

- \triangleright Both \tilde{s} and \bar{s} are unbiased.
- Additional computations are at time complexity $\mathcal{O}(|\mathcal{E}|)$ per sample.

- \triangleright Both \tilde{s} and \bar{s} are unbiased.
- Additional computations are at time complexity $\mathcal{O}(|\mathcal{E}|)$ per sample.
- \triangleright For certain values of α , we have improved theoretical performance i.e. $Var(s) \ge Var(\tilde{s}) \ge Var(\bar{s})$.

8/13

- Both s and s are unbiased.
- Additional computations are at time complexity $\mathcal{O}(|\mathcal{E}|)$ per sample.
- For certain values of α , we have improved theoretical performance *i.e.* $Var(s) \ge Var(\tilde{s}) \ge Var(\bar{s})$.
- ▶ For example, the optimal value of α for \bar{s} is:

$$\alpha^* = \frac{\mathsf{Cov}(s, \mathsf{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I}))}{\mathsf{Var}(\mathsf{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I}))}.$$

8/13

- Both s and s are unbiased.
- Additional computations are at time complexity $\mathcal{O}(|\mathcal{E}|)$ per sample.
- For certain values of α , we have improved theoretical performance *i.e.* $Var(s) \ge Var(\tilde{s}) \ge Var(\bar{s})$.
- ▶ For example, the optimal value of α for \bar{s} is:

$$\alpha^* = \frac{\mathsf{Cov}(s, \mathsf{tr}(\mathsf{K}^{-1}\mathsf{S} - \mathsf{I}))}{\mathsf{Var}(\mathsf{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I}))}.$$

• One can either choose a value for α from the safe range (e.g. $\alpha = \frac{2q}{q+2d_{max}}$) or estimate from the samples:

$$\hat{\alpha} = \frac{\widehat{\mathsf{Cov}}(s,\mathsf{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}}-\mathsf{I}))}{\widehat{\mathsf{Var}}(\mathsf{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}}-\mathsf{I}))}.$$

◆御 ▶ ◆ 恵 ▶ ◆ 恵 | ● | ● | ● | ◆ ○ ○ ○

Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^K C_k$.

- Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^K C_k$.
- ▶ We assume:
 - ▶ $\mathbb{P}(Y \in C_k)$ is accessible,
 - ▶ $s|Y \in C_k$ is easy to sample.

- Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^K C_k$.
- ▶ We assume:
 - ▶ $\mathbb{P}(Y \in C_k)$ is accessible,
 - ▶ $s|Y \in C_k$ is easy to sample.
- ▶ Then the stratified sampling takes the following form:

$$s_{st} \coloneqq \sum_{k=1}^K \left(\frac{1}{N_k} \sum_{j=1}^{N_k} s^{(j)} | Y \in C_k \right) \mathbb{P}(Y \in C_k).$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 日 ・ の Q ○ ○

- Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^K C_k$.
- We assume:
 - $ightharpoonup \mathbb{P}(Y \in C_k)$ is accessible,
 - \triangleright $s|Y \in C_k$ is easy to sample.
- ▶ Then the stratified sampling takes the following form:

$$s_{st} \coloneqq \sum_{k=1}^K \left(\frac{1}{N_k} \sum_{j=1}^{N_k} s^{(j)} | Y \in C_k \right) \mathbb{P}(Y \in C_k).$$

For certain allocations N_k 's, s_{st} has a reduced variance.

- Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^K C_k$.
- ▶ We assume:
 - $ightharpoonup \mathbb{P}(Y \in C_k)$ is accessible,
 - ▶ $s|Y \in C_k$ is easy to sample.
- Then the stratified sampling takes the following form:

$$s_{st} := \sum_{k=1}^K \left(\frac{1}{N_k} \sum_{j=1}^{N_k} s^{(j)} | Y \in C_k \right) \mathbb{P}(Y \in C_k).$$

- For certain allocations N_k 's, s_{st} has a reduced variance.
- ▶ We find a such random variable *Y* in RSFs!

◆母 ト ◆ 重 ト ◆ 重 ト ● 1章 り 9 ○ ○

Comparison with SOTA

We compare the proposed algorithms with Hutchinson's estimator combined with several linear solvers.

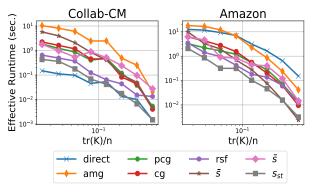


Figure: Effective Runtime vs tr(K)/n.

Conclusion

Random spanning forests are useful for randomized linear algebra involving SDD matrices.

Conclusion

- Random spanning forests are useful for randomized linear algebra involving SDD matrices.
- ▶ We propose two ways of improving the forest-based trace estimator.

Conclusion

- Random spanning forests are useful for randomized linear algebra involving SDD matrices.
- We propose two ways of improving the forest-based trace estimator.
- We validate these methods over real-life datasets.

Conclusion

- Random spanning forests are useful for randomized linear algebra involving SDD matrices.
- We propose two ways of improving the forest-based trace estimator.
- We validate these methods over real-life datasets.
- We hope to extend these results for estimating other Laplacian-based quantities, such as effective resistances.

References

Luca Avena and Alexandre Gaudillière. "Random spanning forests, Markov matrix spectra and well distributed points". In: *arXiv preprint arXiv:1310.1723* (2013).

Simon Barthelmé et al. "Estimating the inverse trace using random forests on graphs". In: arXiv preprint arXiv:1905.02086 (2019).

Yusuf Pilavcı et al. "Variance reduction in stochastic methods for large-scale regularised least-squares problems". In: arXiv preprint arXiv:2110.07894 (2021).

Yusuf Yiğit Pilavcı et al. "Graph tikhonov regularization and interpolation via random spanning forests". In: *IEEE transactions on Signal and Information Processing over Networks* 7 (2021), pp. 359–374.

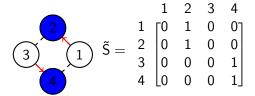
Questions

If you are hiring post-docs, scan me!

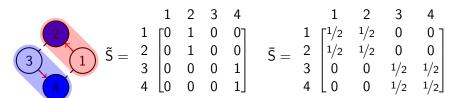
Thanks! Questions?

▶ We previously proposed two estimators for K [Pil+21b]:

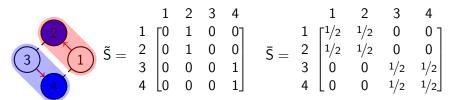
▶ We previously proposed two estimators for K [Pil+21b]:



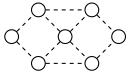
▶ We previously proposed two estimators for K [Pil+21b]:



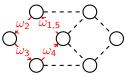
We previously proposed two estimators for K [Pil+21b]:

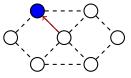


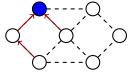
Both are unbiased with tractable variances.

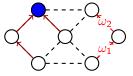


▶ The algorithm for sampling RSFs works in the following way:

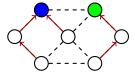




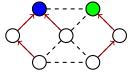




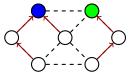
▶ The algorithm for sampling RSFs works in the following way:



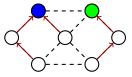
▶ The algorithm for sampling RSFs works in the following way:



We choose our stratification variable Y = s' as the number of roots sampled at *the first sight*:



- ightharpoonup We choose our stratification variable Y=s' as the number of roots sampled at the first sight:
 - $ightharpoonup s' \sim \sum_{i=1}^n \operatorname{Ber}\left(\frac{q}{q+d_i}\right)$



- ightharpoonup We choose our stratification variable Y=s' as the number of roots sampled at the first sight:
 - $ightharpoonup s' \sim \sum_{i=1}^n \operatorname{Ber}\left(\frac{q}{q+d_i}\right)$
 - Sampling RSFs given $s' \in C_k$ is easy.

► SOTA for estimating tr(K) is Hutchinson's estimator []:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} \mathsf{K} \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)} = \pm 1) = 1/2$.

► SOTA for estimating tr(K) is Hutchinson's estimator []:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} \mathsf{K} \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)} = \pm 1) = 1/2$.

▶ It is an unbiased estimator of tr(K).

SOTA for estimating tr(K) is Hutchinson's estimator []:

$$h := \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} \mathsf{K} \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_i^{(i)}=\pm 1)=1/2.$

- ▶ It is an unbiased estimator of tr(K).
- ▶ The cumbersome computation here is $Ka^{(i)}$ for N vectors.

► SOTA for estimating tr(K) is Hutchinson's estimator []:

$$h := \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} \mathsf{K} \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}_j^{(i)} = \pm 1) = 1/2$.

- ▶ It is an unbiased estimator of tr(K).
- ▶ The cumbersome computation here is $Ka^{(i)}$ for N vectors.
- ▶ It can be done via:
 - Direct computation via Cholesky decomposition
 - (Preconditioned) Iterative solvers
 - Algebraic Multigrid solvers

