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Introduction

P Trace is an essential algebraic operation.

» In many applications, tr(f(L)) is the quantity of interest for a
given matrix L.

P> However, it is not always easy to compute...
» In this work, we focus on

f(L)=q(L+ql)7",

where g > 0 and L is symmetric and diagonally
dominant i.e. Vi € V, 314 |Lij| < |Lijl.
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Hyperparameter Selection for Graph Signal Smoothing

Original Signal: y:
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Hyperparameter Selection for Graph Signal Smoothing

Original Signal: y:

_><_>

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, &, w),

x=argminglly—x/?+ x'Lx , ¢>0
xERM " . ——
Fidelity Regularization

where L is the graph Laplacian and x"Lx = 3> w(i,j)(x — xj)*.
(ij)e€
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Graph Signal Smoothing

P> The explicit solution to this problem is:

% = Ky with K = g(L 4 ql)7!
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Graph Signal Smoothing

P> The explicit solution to this problem is:

% = Ky with K = g(L 4 ql)7!

» The denoising error ||x — X||3 highly depends on g.

» Many methods of finding good value of g needs to compute
tr(K).

» However, computing the inverse takes O(n®) operations.
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Inverse Trace Estimation: Random Spanning Forests

> A recent algorithm is based on random spanning forests on
graphs [Bar+19].

1,

gipsa-lab



Inverse Trace Estimation: Random Spanning Forests

> A recent algorithm is based on random spanning forests on
graphs [Bar+19].

» A rooted spanning forest on a graph:

A rooted spanning forest

1,

gipsa-lab



Inverse Trace Estimation: Random Spanning Forests

> A recent algorithm is based on random spanning forests on
graphs [Bar+19].

» A rooted spanning forest on a graph:

A rooted spanning forest

» Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

1,

gipsa-lab



Inverse Trace Estimation: Random Spanning Forests

> A recent algorithm is based on random spanning forests on
graphs [Bar+19].

» A rooted spanning forest on a graph:

A rooted spanning forest

» Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

» For a particular distribution [AG13], we have useful links with
graph-related algebra.
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Inverse Trace Estimation: Random Spanning Forests

» [Bar+19] propose to estimate tr(K) by the number of roots in
RSFs, denoted by s.

P> |t is an unbiased estimator with a tractable variance:

E[s] = tr(K) with Var(s) = tr(K — K?).

» Empirical results shows that is comparable with Girard's
estimator.

» In this work, we give two ways of improving this estimator.
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Gradient Descent Update as Control Variate

» Estimation of K can be considered as minimizing the loss
following function:

L(S) = tr (;STK‘ls - s)
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Gradient Descent Update as Control Variate

» Estimation of K can be considered as minimizing the loss
following function:

L(S) = tr (;STK‘ls - s)

» The gradient descent algorithm draws the following iteration:
Skr1 =Sk — Oé(K_lsk — |).

where « is the update size. B
» In [Pil+21b], we give two unbiased estimators S and S.
» Then, we improve them as follows [Pil+21a]:

Z:=5— (K151
Z=S—aK1S-1

> Focusing on the trace, we define 3 := tr(Z) and 5 := tr(Z).
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Properties of these estimators

> Both 5 and 5 are unbiased.
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Properties of these estimators

> Both 3 and 5 are unbiased.

> Additional computations are at time complexity O(|£]) per
sample.

» For certain values of «, we have improved theoretical
performance i.e. Var(s) > Var(8) > Var(s).

» For example, the optimal value of « for 5 is:

B Cov(s, tr(K~1S — 1))
© Var(tr(K-1S 1))

*

» One can either choose a value for o from the safe range

_ 29 : .
(e.g. a = 54— or estimate from the samples:

Cov(s, tr(K™15 — 1))
Var(tr(K-15 —1))

& =
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Variance Reduction via Stratification

» Consider a random variable Y with an outcome set
Q= UkK:1 Ck.
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Variance Reduction via Stratification

» Consider a random variable Y with an outcome set
Q= UkK:1 Ck.
> We assume:

> P(Y € C) is accessible,
> s|Y € Cy is easy to sample.

» Then the stratified sampling takes the following form:

K Ny
1 )
St = (Nkzs(f)\v € ck) P(Y € Cy).

k=1 j=1
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Variance Reduction via Stratification

» Consider a random variable Y with an outcome set
Q= UkK:1 Ck.
> We assume:
> P(Y € C) is accessible,
> s|Y € Cy is easy to sample.

» Then the stratified sampling takes the following form:

K 1 Ny )
Set ::Z —ZSU)\YEC;( P(Y € Cy).
k=1 j=1

» For certain allocations Ny's, ss; has a reduced variance.
» We find a such random variable Y in RSFs!
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Comparison with SOTA

» We compare the proposed algorithms with Hutchinson's
estimator combined with several linear solvers.
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Figure: Effective Runtime vs tr(K)/n.
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Conclusion

» Random spanning forests are useful for randomized linear
algebra involving SDD matrices.

» We propose two ways of improving the forest-based trace
estimator.

> We validate these methods over real-life datasets.

> We hope to extend these results for estimating other
Laplacian-based quantities, such as effective resistances.
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Estimating K with Forests

» We previously proposed two estimators for K [Pil+21b]:
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» We previously proposed two estimators for K [Pil+21b]:

1 2 3 4 1 2 3 4
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Estimating K with Forests

» We previously proposed two estimators for K [Pil+21b]:

1 2 3 4 1 2 3 4

1170 1 0 0 172 Y2 0 0
g_ 210 1 0 Of §_ 2% 12 0 O
3000 1 310 0 12 1
40 0 0 1 4 L0 0 Y2 1

» Both are unbiased with tractable variances.
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Variance Reduction via Stratification

» The algorithm for sampling RSFs works in the following way:

> We choose our stratification variable Y = s’ as the number of
roots sampled at the first sight:

> s~ 1Ber<q+d)

» Sampling RSFs given s’ € Cj is easy.
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Inverse Trace Estimation: Hutchinson's Estimator

» SOTA for estimating tr(K) is Hutchinson's estimator []:

N
ho— %Z " Kal

i=1

where a()) € {—1,1}" is a random vector with
P(al) = +1) =1/2.
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Inverse Trace Estimation: Hutchinson's Estimator

» SOTA for estimating tr(K) is Hutchinson's estimator []:

1 T .
ho— — ()" kal)
N;a a

where a()) € {—1,1}" is a random vector with

P(al) = +1) =1/2.
» It is an unbiased estimator of tr(K).
» The cumbersome computation here is Kal?) for N vectors.
» It can be done via:

» Direct computation via Cholesky decomposition
» (Preconditioned) lterative solvers

> Algebraic Multigrid solvers
> ...
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