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Regularized Least-Squares Problem

I Given the n data-measurement pairs (ai ,1, . . . , ai ,p, yi )’s, we
seek for the best hyperplane that interprets the relation
between the data and the measurements.
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I This problem often takes the following form:

x̂ = argmin
x∈Rp

||Ax− y||22 + λx>Px,

where λx>Px is the regularization term.
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Regularized Least-Squares Problem

I The closed-form solution can be exactly calculated at the cost
of O(np2).

I This is impractical when n and p are large.
I The approximate methods are often used:

I Deterministic: Gradient descent algorithms.
I Randomized: Stochastic gradient descent.

I Interesting alternatives are the algorithms based on
determinantal point processes [DM21].
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DPP-based Randomized Methods

I Assume P = I for the simplicity,

A =

Sample rows


 †y

I They give unbiased estimates with tractable variance
calculation.

I However, they have a slow convergence rate i.e. Monte Carlo
rate O(N−1/2).
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Main Idea

I Solving the optimization problem is equivalent to minimizing
the following quadratic form:

F (x) = 1
2x>Qx− x>r.

I The gradient descent algorithm draws the following iteration
scheme:

xk+1 = xk − α∇F (xk)

where α ∈ R and ∇F (xk) = Qxk − r.
I Let x̃ be the DPP estimator. A new estimator by applying a

single step is:
z̃ := x̃− α(Qx̃− r)
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Main Idea

I If x̃ is unbiased i.e. E[x̃] = Q−1r, then z̃ is also unbiased since:

E[z̃] = E[x̃]− α(QE[x̃]− r) = Q−1r.

I For some values of α, one can guarantee that
Var(z̃) ≤ Var(x̃).

I Moreover, Var(z̃) is a quadratic function of α which is
minimized at:

α? = tr(Cov(Qx̃, x̃))
tr(Cov(Qx̃)) .

I In Monte Carlo literature, this way of reducing the variance is
called control variate method.
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Graph Tikhonov Regularization: A Use Case
Original Signal: y:

x̂:

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, E ,w),

x̂ = arg min
x∈Rn

q ||y− x||2︸ ︷︷ ︸
Fidelity

+ xTLx︸ ︷︷ ︸
Regularization

, q > 0

where L is the graph Laplacian and xTLx =
∑

(i ,j)∈E
w(i , j)(xi − xj)2.
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Graph Tikhonov Regularization: A Use Case

I The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

I Direct computation of K requires O(n3) elementary
operations due to the inverse.

I For large n, iterative methods and polynomial approximations
are state-of-the-art. Both compute x̂ in linear time in the
number of edges |E|.

I In [Pil+21], we also propose a Monte Carlo algorithm for
estimating x̂.
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Random Spanning Forests

I A rooted spanning forest on a graph and its partition:

A rooted spanning forest

A partition

I Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

I For a particular distribution [AG13], we have useful links with
graph-related algebra.
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Forest-based Estimator

Sample
a forest

Average&
Propagate

I Random partitions are sampled via random spanning forests.
I This yields an unbiased estimator x̄.
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Variance Reduction on the Forest Estimator
I Adapting the variance reduction idea, one has:

z̄ := x̄− α(K−1x̄− y).

I z̄ is unbiased.
I A matrix-vector product with L is needed only once.
I The optimal value for α is:

α? = tr(Cov(K−1x̄, x̄))
tr(Cov(K−1x̄)) .

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:

α̂ = tr(Ĉov(K−1x̄, x̄))
tr(Ĉov(K−1x̄))

.

gipsa-lab

, 11/ 15



Variance Reduction on the Forest Estimator
I Adapting the variance reduction idea, one has:

z̄ := x̄− α(K−1x̄− y).

I z̄ is unbiased.

I A matrix-vector product with L is needed only once.
I The optimal value for α is:

α? = tr(Cov(K−1x̄, x̄))
tr(Cov(K−1x̄)) .

I One can either choose a value for α from the safe range
(e.g. α = 2q

q+2dmax
) or estimate from the samples:
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Two choices of α

I We empirically compare these options of α over a regular and
irregular graph:
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More Illustrations

Original Signal Noisy Measurements y Exact solution x̂

x̄ z̄
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More Illustrations
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Figure: PSNR vs q, N=2

gipsa-lab

, 14/ 15



Future Work

I We propose a variance reduction technique for the DPP-based
estimators to solve the regularized least squares problem

I We adapt this technique for a particular DPP-estimator for
solving graph Tikhonov regularization problem.

I There are several avenues to improve z̄ = Ty:
I Using 1

2 (T + T>)y,
I Preconditioning with diag(K−1).
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Random Spanning Forests

Definition (RSF)
A random spanning forest Φq on a graph G is spanning forest
selected over all spanning forests of G according to the following
distribution:

P(Φq = φ) ∝ q|ρ(φ)| ∏
(i ,j)∈Eφ

w(i , j)
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Wilson’s Algorithm
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