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Regularized Least-Squares Problem

» Given the n data-measurement pairs (aj 1, ..., aip,Yi)'s, we
seek for the best hyperplane that interprets the relation
between the data and the measurements.
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Regularized Least-Squares Problem

» Given the n data-measurement pairs (aj 1, ..., aip,Yi)'s, we
seek for the best hyperplane that interprets the relation
between the data and the measurements.

a

» This problem often takes the following form:

% = argmin ||Ax — y||2 + Ax " Px,
x€RP

where Ax ' Px is the regularization term.
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» The closed-form solution can be exactly calculated at the cost
of O(np?).
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Regularized Least-Squares Problem

» The closed-form solution can be exactly calculated at the cost
of O(np?).
» This is impractical when n and p are large.
» The approximate methods are often used:
» Deterministic: Gradient descent algorithms.
» Randomized: Stochastic gradient descent.
P Interesting alternatives are the algorithms based on
determinantal point processes [DM21].
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DPP-based Randomized Methods

» Assume P = | for the simplicity,

gipsa-lab



DPP-based Randomized Methods

» Assume P = | for the simplicity,

gipsa-lab

Sample rows
—_—




DPP-based Randomized Methods

» Assume P = | for the simplicity,

gipsa-lab

Sample rows
—_—




DPP-based Randomized Methods

» Assume P = | for the simplicity,

Sample rows t
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> They give unbiased estimates with tractable variance
calculation.
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DPP-based Randomized Methods

» Assume P = | for the simplicity,

Sample rows t
A= —_— y

> They give unbiased estimates with tractable variance
calculation.

» However, they have a slow convergence rate i.e. Monte Carlo
rate O(N~1/?).
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Main Idea

» Solving the optimization problem is equivalent to minimizing
the following quadratic form:

1
F(x) = EXTQX —x'r.
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where o € R and VF(xx) = Qxx —r.
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Main Idea

» Solving the optimization problem is equivalent to minimizing
the following quadratic form:

1
F(x) = EXTQX —x'r.

» The gradient descent algorithm draws the following iteration
scheme:
Xk+1 = Xk — aV F(xk)

where o € R and VF(xx) = Qxx —r.

P> Let X be the DPP estimator. A new estimator by applying a
single step is:
z=%x—a(Qx—r)

gipsa-lab



Main Idea

» If X is unbiased i.e. E[X] = Q I, then Z is also unbiased since:

E[Z] = E[X] — «(QE[X] —r) = Q" 'r.
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Main Idea

» If X is unbiased i.e. E[X] = Q I, then Z is also unbiased since:

E[Z] = E[X] — «(QE[X] —r) = Q" 'r.

» For some values of «, one can guarantee that
Var(z) < Var(%).
» Moreover, Var(Z) is a quadratic function of « which is
minimized at: o
. _ tr(Cov(QX, X))

tr(Cov(QX))

» In Monte Carlo literature, this way of reducing the variance is
called control variate method.
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Graph Tikhonov Regularization: A Use Case

Original Signal: y:
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Figure: Median taxi fees paid in drop-off locations in NYC
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Graph Tikhonov Regularization: A Use Case

Original Signal: y:

_><_>

Figure: Median taxi fees paid in drop-off locations in NYC

Given a graph G = (V, &, w),

x=argminglly—x/?+ x'Lx , ¢>0
xERM " . ——
Fidelity Regularization

where L is the graph Laplacian and x"Lx = 3> w(i,j)(x — xj)*.
(ij)e€
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Graph Tikhonov Regularization: A Use Case

> The explicit solution to this problem is:

% = Ky with K = g(L + gl)!

gipsa-lab



Graph Tikhonov Regularization: A Use Case

> The explicit solution to this problem is:

% = Ky with K = g(L + gl)!

» Direct computation of K requires O(n3) elementary
operations due to the inverse.

gipsa-lab



Graph Tikhonov Regularization: A Use Case

> The explicit solution to this problem is:

% = Ky with K = g(L + gl)!

» Direct computation of K requires O(n3) elementary
operations due to the inverse.

» For large n, iterative methods and polynomial approximations
are state-of-the-art. Both compute X in linear time in the
number of edges |£].

» In [Pil+21], we also propose a Monte Carlo algorithm for
estimating X.
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Random Spanning Forests

> A rooted spanning forest on a graph and its partition:

A rooted spanning forest
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Random Spanning Forests

> A rooted spanning forest on a graph and its partition:

A rooted spanning forest A partition

» Random spanning forests is the process of randomly selecting
a spanning forest over all possible forests.

» For a particular distribution [AG13], we have useful links with
graph-related algebra.
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Forest-based Estimator
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Forest-based Estimator

» Random partitions are sampled via random spanning forests.
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Forest-based Estimator

Sample 4 Average & o
aforest /‘\Propagate ‘
H

‘ N\
—
Y Y
N\, N

» Random partitions are sampled via random spanning forests.
» This yields an unbiased estimator Xx.
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Variance Reduction on the Forest Estimator

» Adapting the variance reduction idea, one has:

z=%—aK1lx—y).
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Variance Reduction on the Forest Estimator

» Adapting the variance reduction idea, one has:

z=%—aK1lx—y).

> Z is unbiased.

> A matrix-vector product with L is needed only once.
» The optimal value for « is:

_ tr(Cov(K™1%, %))

~ tr(Cov(K—1x))

*

» One can either choose a value for o from the safe range

_ 2q : .
(e.g. a = 754—) or estimate from the samples:

tr(C/g\v\(K_li,i)).
tr(Cov(K~1x))

& =
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Two choices of o

» We empirically compare these options of « over a regular and
irregular graph:

Regular Graph

Barabasi-Albert Graph
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More Illustrations
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More Illustrations

PSNR vs q
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Figure: PSNR vs q, N=2
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Future Work

» We propose a variance reduction technique for the DPP-based
estimators to solve the regularized least squares problem
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Future Work

» We propose a variance reduction technique for the DPP-based
estimators to solve the regularized least squares problem
» We adapt this technique for a particular DPP-estimator for
solving graph Tikhonov regularization problem.
» There are several avenues to improve z = Ty:
> Using 1(T+T")y,
> Preconditioning with diag(K1).
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Random Spanning Forests

Definition (RSF)

A random spanning forest ®, on a graph G is spanning forest
selected over all spanning forests of G according to the following
distribution:

P(®g =) g"@ T w(i.j)
(ij)e€s
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Wilson's Algorithm
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