Variance Reduction in Stochastic Methods For Large-Scale Regularized Least-Squares Problems

Yusuf Yiğit Pilavcı* Pierre-Olivier Amblard Simon Barthelmé Nicolas Tremblay

Regularized Least-Squares Problem

- Given the n data-measurement pairs $\left(a_{i, 1}, \ldots, a_{i, p}, y_{i}\right)$'s, we seek for the best hyperplane that interprets the relation between the data and the measurements.

Regularized Least-Squares Problem

- Given the n data-measurement pairs $\left(a_{i, 1}, \ldots, a_{i, p}, y_{i}\right)$'s, we seek for the best hyperplane that interprets the relation between the data and the measurements.

- This problem often takes the following form:

$$
\hat{\mathbf{x}}=\underset{\mathbf{x} \in \mathbb{R}^{p}}{\operatorname{argmin}}\|\mathbf{A x}-\mathbf{y}\|_{2}^{2}+\lambda \mathbf{x}^{\top} \mathrm{P} \mathbf{x}
$$

where $\lambda \mathbf{x}^{\top} \mathbf{P x}$ is the regularization term.

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.
- This is impractical when n and p are large.

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.
- This is impractical when n and p are large.
- The approximate methods are often used:

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.
- This is impractical when n and p are large.
- The approximate methods are often used:
- Deterministic: Gradient descent algorithms.

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.
- This is impractical when n and p are large.
- The approximate methods are often used:
- Deterministic: Gradient descent algorithms.
- Randomized: Stochastic gradient descent.

Regularized Least-Squares Problem

- The closed-form solution can be exactly calculated at the cost of $\mathcal{O}\left(n p^{2}\right)$.
- This is impractical when n and p are large.
- The approximate methods are often used:
- Deterministic: Gradient descent algorithms.
- Randomized: Stochastic gradient descent.
- Interesting alternatives are the algorithms based on determinantal point processes [DM21].

DPP-based Randomized Methods

- Assume $P=I$ for the simplicity,

DPP-based Randomized Methods

- Assume $P=I$ for the simplicity,

DPP-based Randomized Methods

- Assume $\mathrm{P}=\mathrm{I}$ for the simplicity,

DPP-based Randomized Methods

- Assume $P=I$ for the simplicity,

- They give unbiased estimates with tractable variance calculation.

DPP-based Randomized Methods

- Assume $P=I$ for the simplicity,

- They give unbiased estimates with tractable variance calculation.
- However, they have a slow convergence rate i.e. Monte Carlo rate $\mathcal{O}\left(N^{-1 / 2}\right)$.

Main Idea

- Solving the optimization problem is equivalent to minimizing the following quadratic form:

$$
F(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}-\mathbf{x}^{\top} \mathbf{r}
$$

Main Idea

- Solving the optimization problem is equivalent to minimizing the following quadratic form:

$$
F(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}-\mathbf{x}^{\top} \mathbf{r} .
$$

- The gradient descent algorithm draws the following iteration scheme:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \nabla F\left(\mathbf{x}_{k}\right)
$$

where $\alpha \in \mathbb{R}$ and $\nabla F\left(\mathbf{x}_{k}\right)=Q \mathbf{x}_{k}-\mathbf{r}$.

Main Idea

- Solving the optimization problem is equivalent to minimizing the following quadratic form:

$$
F(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}-\mathbf{x}^{\top} \mathbf{r} .
$$

- The gradient descent algorithm draws the following iteration scheme:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \nabla F\left(\mathbf{x}_{k}\right)
$$

where $\alpha \in \mathbb{R}$ and $\nabla F\left(\mathbf{x}_{k}\right)=Q \mathbf{x}_{k}-\mathbf{r}$.

- Let $\tilde{\mathbf{x}}$ be the DPP estimator. A new estimator by applying a single step is:

$$
\tilde{\mathbf{z}}:=\tilde{\mathbf{x}}-\alpha(\mathbf{Q} \tilde{\mathbf{x}}-\mathbf{r})
$$

Main Idea

- If $\tilde{\mathbf{x}}$ is unbiased i.e. $\mathbb{E}[\tilde{\mathbf{x}}]=\mathrm{Q}^{-1} \mathbf{r}$, then $\tilde{\mathbf{z}}$ is also unbiased since:

$$
\mathbb{E}[\tilde{\mathbf{z}}]=\mathbb{E}[\tilde{\mathbf{x}}]-\alpha(\mathbf{Q E}[\tilde{\mathbf{x}}]-\mathbf{r})=\mathbf{Q}^{-1} \mathbf{r} .
$$

Main Idea

- If $\tilde{\mathbf{x}}$ is unbiased i.e. $\mathbb{E}[\tilde{\mathbf{x}}]=\mathrm{Q}^{-1} \mathbf{r}$, then $\tilde{\mathbf{z}}$ is also unbiased since:

$$
\mathbb{E}[\tilde{\mathbf{z}}]=\mathbb{E}[\tilde{\mathbf{x}}]-\alpha(\mathbf{Q E}[\tilde{\mathbf{x}}]-\mathbf{r})=\mathbf{Q}^{-1} \mathbf{r} .
$$

- For some values of α, one can guarantee that $\operatorname{Var}(\tilde{\mathbf{z}}) \leq \operatorname{Var}(\tilde{\mathbf{x}})$.

Main Idea

- If $\tilde{\mathbf{x}}$ is unbiased i.e. $\mathbb{E}[\tilde{\mathbf{x}}]=\mathrm{Q}^{-1} \mathbf{r}$, then $\tilde{\mathbf{z}}$ is also unbiased since:

$$
\mathbb{E}[\tilde{\mathbf{z}}]=\mathbb{E}[\tilde{\mathbf{x}}]-\alpha(\mathbf{Q E}[\tilde{\mathbf{x}}]-\mathbf{r})=\mathbf{Q}^{-1} \mathbf{r} .
$$

- For some values of α, one can guarantee that $\operatorname{Var}(\tilde{\mathbf{z}}) \leq \operatorname{Var}(\tilde{\mathbf{x}})$.
- Moreover, $\operatorname{Var}(\tilde{\mathbf{z}})$ is a quadratic function of α which is minimized at:

$$
\alpha^{\star}=\frac{\operatorname{tr}(\operatorname{Cov}(\mathrm{Q} \tilde{\mathbf{x}}, \tilde{\mathbf{x}}))}{\operatorname{tr}(\operatorname{Cov}(\mathrm{Q} \tilde{\mathbf{x}}))} .
$$

Main Idea

- If $\tilde{\mathbf{x}}$ is unbiased i.e. $\mathbb{E}[\tilde{\mathbf{x}}]=\mathrm{Q}^{-1} \mathbf{r}$, then $\tilde{\mathbf{z}}$ is also unbiased since:

$$
\mathbb{E}[\tilde{\mathbf{z}}]=\mathbb{E}[\tilde{\mathbf{x}}]-\alpha(\mathrm{QE}[\tilde{\mathbf{x}}]-\mathbf{r})=\mathrm{Q}^{-1} \mathbf{r}
$$

- For some values of α, one can guarantee that $\operatorname{Var}(\tilde{\mathbf{z}}) \leq \operatorname{Var}(\tilde{\mathbf{x}})$.
- Moreover, $\operatorname{Var}(\tilde{\mathbf{z}})$ is a quadratic function of α which is minimized at:

$$
\alpha^{\star}=\frac{\operatorname{tr}(\operatorname{Cov}(\mathrm{Q} \tilde{\mathbf{x}}, \tilde{\mathbf{x}}))}{\operatorname{tr}(\operatorname{Cov}(\mathrm{Q} \tilde{\mathbf{x}}))}
$$

- In Monte Carlo literature, this way of reducing the variance is called control variate method.

Graph Tikhonov Regularization: A Use Case

Original Signal: y :

Graph Tikhonov Regularization: A Use Case

Figure: Median taxi fees paid in drop-off locations in NYC

Graph Tikhonov Regularization: A Use Case

Original Signal:

$\hat{\mathbf{x}}$:

Figure: Median taxi fees paid in drop-off locations in NYC
Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, w)$,

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} q \underbrace{\|\mathbf{y}-\mathbf{x}\|^{2}}_{\text {Fidelity }}+\underbrace{\mathbf{x}^{T} L \mathbf{x}}_{\text {Regularization }}, \quad q>0
$$

where L is the graph Laplacian and $\mathbf{x}^{\top} \mathbf{L} \mathbf{x}=\sum_{(i, j) \in \mathcal{E}} w(i, j)\left(x_{i}-x_{j}\right)^{2}$.

Graph Tikhonov Regularization: A Use Case

- The explicit solution to this problem is:

$$
\hat{\mathbf{x}}=\mathrm{K} \mathbf{y} \text { with } \mathrm{K}=q(\mathrm{~L}+q \mathrm{l})^{-1}
$$

Graph Tikhonov Regularization: A Use Case

- The explicit solution to this problem is:

$$
\hat{\mathbf{x}}=\mathrm{K} \mathbf{y} \text { with } \mathrm{K}=q(\mathrm{~L}+q \mathrm{l})^{-1}
$$

- Direct computation of K requires $\mathcal{O}\left(n^{3}\right)$ elementary operations due to the inverse.

Graph Tikhonov Regularization: A Use Case

- The explicit solution to this problem is:

$$
\hat{\mathbf{x}}=\mathrm{K} \mathbf{y} \text { with } \mathrm{K}=q(\mathrm{~L}+q \mathrm{l})^{-1}
$$

- Direct computation of K requires $\mathcal{O}\left(n^{3}\right)$ elementary operations due to the inverse.
- For large n, iterative methods and polynomial approximations are state-of-the-art. Both compute $\hat{\mathbf{x}}$ in linear time in the number of edges $|\mathcal{E}|$.
- In [Pil+21], we also propose a Monte Carlo algorithm for estimating $\hat{\mathbf{x}}$.

Random Spanning Forests

- A rooted spanning forest on a graph and its partition:

Random Spanning Forests

- A rooted spanning forest on a graph and its partition:

Random Spanning Forests

- A rooted spanning forest on a graph and its partition:

- Random spanning forests is the process of randomly selecting a spanning forest over all possible forests.

Random Spanning Forests

- A rooted spanning forest on a graph and its partition:

- Random spanning forests is the process of randomly selecting a spanning forest over all possible forests.
- For a particular distribution [AG13], we have useful links with graph-related algebra.

Forest-based Estimator

Forest-based Estimator

- Random partitions are sampled via random spanning forests.

Forest-based Estimator

- Random partitions are sampled via random spanning forests.
- This yields an unbiased estimator $\overline{\mathbf{x}}$.

Variance Reduction on the Forest Estimator

- Adapting the variance reduction idea, one has:

$$
\overline{\mathbf{z}}:=\overline{\mathbf{x}}-\alpha\left(\mathrm{K}^{-1} \overline{\mathbf{x}}-\mathbf{y}\right) .
$$

Variance Reduction on the Forest Estimator

- Adapting the variance reduction idea, one has:

$$
\overline{\mathbf{z}}:=\overline{\mathbf{x}}-\alpha\left(\mathbf{K}^{-1} \overline{\mathbf{x}}-\mathbf{y}\right) .
$$

- $\overline{\mathbf{z}}$ is unbiased.

Variance Reduction on the Forest Estimator

- Adapting the variance reduction idea, one has:

$$
\overline{\mathbf{z}}:=\overline{\mathbf{x}}-\alpha\left(\mathrm{K}^{-1} \overline{\mathbf{x}}-\mathbf{y}\right) .
$$

- $\overline{\mathbf{z}}$ is unbiased.
- A matrix-vector product with L is needed only once.

Variance Reduction on the Forest Estimator

- Adapting the variance reduction idea, one has:

$$
\overline{\mathbf{z}}:=\overline{\mathbf{x}}-\alpha\left(\mathrm{K}^{-1} \overline{\mathbf{x}}-\mathbf{y}\right) .
$$

- $\overline{\mathbf{z}}$ is unbiased.
- A matrix-vector product with L is needed only once.
- The optimal value for α is:

$$
\alpha^{\star}=\frac{\operatorname{tr}\left(\operatorname{Cov}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}, \overline{\mathbf{x}}\right)\right)}{\operatorname{tr}\left(\operatorname{Cov}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}\right)\right)}
$$

Variance Reduction on the Forest Estimator

- Adapting the variance reduction idea, one has:

$$
\overline{\mathbf{z}}:=\overline{\mathbf{x}}-\alpha\left(\mathrm{K}^{-1} \overline{\mathbf{x}}-\mathbf{y}\right) .
$$

- $\overline{\mathbf{z}}$ is unbiased.
- A matrix-vector product with L is needed only once.
- The optimal value for α is:

$$
\alpha^{\star}=\frac{\operatorname{tr}\left(\operatorname{Cov}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}, \overline{\mathbf{x}}\right)\right)}{\operatorname{tr}\left(\operatorname{Cov}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}\right)\right)}
$$

- One can either choose a value for α from the safe range (e.g. $\alpha=\frac{2 q}{q+2 d_{\text {max }}}$) or estimate from the samples:

$$
\hat{\alpha}=\frac{\operatorname{tr}\left(\widehat{\operatorname{Cov}}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}, \overline{\mathbf{x}}\right)\right)}{\operatorname{tr}\left(\widehat{\operatorname{Cov}}\left(\mathrm{K}^{-1} \overline{\mathbf{x}}\right)\right)} .
$$

Two choices of α

- We empirically compare these options of α over a regular and irregular graph:

More Illustrations

More Illustrations

More Illustrations

Figure: $P S N R$ vs $q, N=2$

Future Work

- We propose a variance reduction technique for the DPP-based estimators to solve the regularized least squares problem

Future Work

- We propose a variance reduction technique for the DPP-based estimators to solve the regularized least squares problem
- We adapt this technique for a particular DPP-estimator for solving graph Tikhonov regularization problem.

Future Work

- We propose a variance reduction technique for the DPP-based estimators to solve the regularized least squares problem
- We adapt this technique for a particular DPP-estimator for solving graph Tikhonov regularization problem.
- There are several avenues to improve $\overline{\mathbf{z}}=T \mathbf{y}$:
- Using $\frac{1}{2}\left(T+T^{\top}\right) \mathbf{y}$,
- Preconditioning with $\operatorname{diag}\left(K^{-1}\right)$.

Random Spanning Forests

Definition (RSF)

A random spanning forest Φ_{q} on a graph \mathcal{G} is spanning forest selected over all spanning forests of \mathcal{G} according to the following distribution:

$$
P\left(\Phi_{q}=\phi\right) \propto q^{|\rho(\phi)|} \prod_{(i, j) \in \mathcal{E}_{\phi}} w(i, j)
$$

Wilson's Algorithm

