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Introduction
�Trace (sum of the diagonal entries of a matrix) is an essential algebraic operation.

� In many applications, tr(f (L)) is the quantity of interest for a given matrix L.

� In this work, we focus on
f (L) = q(L + qI)−1,

where q > 0 and L is symmetric and diagonally dominant.

Hyperparameter Selection

Regularized Regression on Graphs

x̂ = arg min
z∈Rn

q ||y − z||2︸ ︷︷ ︸
Fidelity

+ zTLz︸︷︷︸
Regularization

, q > 0

where y ∈ Rn is a graph signal. L denotes the graph Laplacian of the given graph and
q is the regularization parameter.

The explicit solution to this problem is:

x̂ = Ky with K = q(L + qI)−1

where I is the identity matrix.

�The denoising error ||x− x̂||22 highly depends on q.

�Many methods of �nding good value of q needs to compute tr(K). For example,
generalized cross-validation computes:

GCV (q) =
1

N

(
n∑
i=1

yi − x̂i
1− (tr(K)/n)

)
.

�However, computing the inverse takes O(n3) operations.

State-of-the-Art
Hutchinson’s estimator

The state-of-the-art algorithm for estimating tr(K) is:

h :=
1

N

N∑
i=1

a(i)>Ka(i)

where a(i) ∈ {−1, 1}n is a random vector with P(a
(i)
j = ±1) = 1/2.

�h is unbiased for estimating tr(K).

�The cumbersome computation is Ka(i) for N vectors.

� It can be done via sparse Cholesky decompisition, iterative solvers, algebraic multigrid
solvers, fast solvers for Laplacian systems...

Random Spanning Forest based
Estimators

For an undirected graph G = (V , E ,W):

Fig. 1: Original graph and a rooted spanning forest

Random Spanning Forests (RSF)

Consider the following parametric distribution over rooted spanning forests:

P (Φq = φ) ∝ q|ρ(φ)|
∏
τ∈φ

∏
(i,j)∈τ

Wi,j

where q is a parameter and ρ(φ) denotes the set of roots in the forest φ. One can
sample from this distribution by a variant of Wilson's algorithm in time O(|E|/q).

A key result:

E[|ρ(Φq)|] = tr(K) with Var(|ρ(Φq)|) = tr(K− K2).

Previously, |ρ(Φq)| is used for estimating tr(K). In this work, we improve its performance.

Proposed Methods

Control Variate Method
Estimation of K can be considered as minimizing the loss following function:

L(S) = tr

(
1

2
S>K−1S− S

)
The gradient descent algorithm draws the following iteration:

Sk+1 = Sk − α(K−1Sk − I).

where α is the update size.

In our previous work, we give two unbiased estimators S̃ and S̄:
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S̃ =

1 2 3 4


1 0 1 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1

S̄ =

1 2 3 4


1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 0 0 1/2 1/2

4 0 0 1/2 1/2

Then, we improve them as follows:

s̃ := tr(S̃− α(K−1S̃− I)),

s̄ := tr(S̄− α(K−1S̄− I)).

One can either choose a value for α from the safe range (e.g. α = 2q
q+2dmax,avg

) or estimate

from the samples:

α̂ =
Ĉov(s, tr(K−1S̄− I))

V̂ar(tr(K−1S̄− I))
.

Stratified Sampling

The second method we adapt is strati�ed sampling.

�Consider a random variable Y with an outcome set Ω = ∪Kk=1Ck.

�We assume:

–P(Y ∈ Ck) is accessible,

– s|Y ∈ Ck is easy to sample.

�Then the strati�ed sampling takes the following form:

sst :=

K∑
k=1

 1

Nk

Nk∑
j=1

s(j)|Y ∈ Ck

P(Y ∈ Ck).

� For certain allocations Nk's, sst has a reduced variance.

�We �nd such a random variable Y in RSFs!

Comparisons with State-of-the-Art
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