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Introduction

e Trace (sum of the diagonal entries of a matrix) is an essential algebraic operation.
e In many applications, tr(f(L)) is the quantity of interest for a given matrix L.

e In this work, we focus on
f(L)=q(L+qh),

where ¢ > 0 and L is symmetric and diagonally dominant.

Hyperparameter Selection

Regularized Regression on Graphs

x =argming|ly —z|°+ z'lz , ¢>0
ZER" e’ S~~~
Fidelity Regularization

where y € R" is a graph signal. L denotes the graph Laplacian of the given graph and

q is the regularization parameter.

The explicit solution to this problem is:
x = Ky with K = ¢g(L +¢l)™*
where | is the identity matrix.

2 highly depends on gq.

e The denoising error ||x — x

e Many methods of finding good value of g needs to compute tr(K). For example,

generalized cross-validation computes:

I N
GCVig) = N ( <] — (tr(K)/n)) |

1=

e However, computing the inverse takes O(n?) operations.

State-of-the-Art '

Hutchinson’s estimator

The state-of-the-art algorithm for estimating tr(K) is:

| N
h = N ;1 a Ka

where al’) € {—1,1}" is a random vector with P(a§i> =+1)=1/2

e h is unbiased for estimating tr(K).
e The cumbersome computation is Kal?) for NV vectors.

e [t can be done via sparse Cholesky decompisition, iterative solvers, algebraic multigrid
solvers, fast solvers for Laplacian systems. ..

Random Spanning Forest based

Estimators
For an undirected graph G = (V, &, W):

Fig. 1: Original graph and a rooted spanning forest

Random Spanning Forests (RSF)

Consider the following parametric distribution over rooted spanning forests:

P(@,=¢)ocd” T [T Wi,
TEY (i,j)ET

where ¢ is a parameter and p(¢@) denotes the set of roots in the forest ¢. One can

sample from this distribution by a variant of Wilson's algorithm in time O(|€]/q).

A key result:
E[|p(®,)]] = tr(K) with Var(|p(@,)]) = tr(K — K?).

Previously, |p(®,)| is used for estimating tr(K). In this work, we improve its performance.
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Proposed Methods

Control Variate Method

Estimation of K can be considered as minimizing the loss following function:

1
L(S) = tr (25TK15 — S)
The gradient descent algorithm draws the following iteration:
Sii1 =S — @(K_lsk — |)

where «v is the update size.

~

In our previous work, we give two unbiased estimators S and S;

1 2 3 4 1 2 3 4
1f01 00 11212 0 0°
S_2(0100] g_2[Y2120 0
310 00 1 310 0 121/
410 0 0 1] 410 0 Y2l

Then, we improve them as follows:
5 =1tr(S — a(K™IS — 1)),
5 :=tr(S — a(K™'S —1)).
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One can either choose a value for a from the safe range (e g a = d

q—|_2dmax,avg

) or estimate
from the samples:

Cov(s, tr(K~1S — 1))
Var(tr(K-1S — 1))

O =

Stratified Sampling

e \\We find such a random variable Y in RSFs!

The second method we adapt is stratified sampling.
e Consider a random variable Y with an outcome set ) = Ui(:le.

e \\Ve assume:

~P(Y € C}) is accessible,
—s|Y € C}. is easy to sample.
e [hen the stratified sampling takes the following form:

K Ny
1 |
;ZE: —E:U)Y . | P(Y € C).

e For certain allocations Ni's, s has a reduced variance.

Comparisons with State-of-the-Art
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