

Variance Reduction for Inverse Trace Estimation

via Random Spanning Forests

Yusuf Yiğit PİLAVCI, Pierre-Olivier AMBLARD, Simon BARTHELMÉ, Nicolas TREMBLAY

Introduction

- Trace (sum of the diagonal entries of a matrix) is an essential algebraic operation.
- In many applications, $\operatorname{tr}(f(\mathsf{L}))$ is the quantity of interest for a given matrix L .
- In this work, we focus on

 $f(\mathsf{L}) = q(\mathsf{L} + q\mathsf{I})^{-1},$

where q > 0 and L is symmetric and diagonally dominant.

Hyperparameter Selection

Proposed Methods

Control Variate Method

Estimation of **K** can be considered as minimizing the loss following function:

$$L(\mathbf{S}) = \operatorname{tr}\left(\frac{1}{2}\mathbf{S}^{\top}\mathbf{K}^{-1}\mathbf{S} - \mathbf{S}\right)$$

The gradient descent algorithm draws the following iteration:

$$\mathsf{S}_{k+1} = \mathsf{S}_k - \alpha(\mathsf{K}^{-1}\mathsf{S}_k - \mathsf{I})$$

where lpha is the update size.

$$\sim$$
 —

Regularized Regression on Graphs

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{z}\in\mathbb{R}^n} q \underbrace{||\mathbf{y} - \mathbf{z}||^2}_{\text{Fidelity}} + \underbrace{\mathbf{z}^T \mathbf{L} \mathbf{z}}_{\text{Regularization}} \quad , \quad q > 0$$

where $\mathbf{y} \in \mathbb{R}^n$ is a graph signal. L denotes the graph Laplacian of the given graph and q is the regularization parameter.

The explicit solution to this problem is:

 $\hat{\mathbf{x}} = \mathbf{K}\mathbf{y}$ with $\mathbf{K} = q(\mathbf{L} + q\mathbf{I})^{-1}$

where I is the identity matrix.

ullet The denoising error $||\mathbf{x} - \hat{\mathbf{x}}||_2^2$ highly depends on q .

 \bullet Many methods of finding good value of q needs to compute $\mathrm{tr}(\mathbf{K})$. For example, generalized cross-validation computes:

$$GCV(q) = \frac{1}{N} \left(\sum_{i=1}^{n} \frac{y_i - \hat{x}_i}{1 - \left(\operatorname{tr}(\mathbf{K})/n \right)} \right).$$

ullet However, computing the inverse takes $\mathcal{O}(n^3)$ operations.

State-of-the-Art

Hutchinson's estimator

In our previous work, we give two unbiased estimators S and \overline{S} :

Then, we improve them as follows:

 $\tilde{s} \coloneqq \operatorname{tr}(\tilde{\mathbf{S}} - \alpha(\mathbf{K}^{-1}\tilde{\mathbf{S}} - \mathbf{I})), \\ \bar{s} \coloneqq \operatorname{tr}(\bar{\mathbf{S}} - \alpha(\mathbf{K}^{-1}\bar{\mathbf{S}} - \mathbf{I})).$

One can either choose a value for α from the safe range (*e.g.* $\alpha = \frac{2q}{q+2d_{max,avg}}$) or estimate from the samples:

$$\hat{\alpha} = \frac{\widehat{\operatorname{Cov}}(s, \operatorname{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I}))}{\widehat{\operatorname{Var}}(\operatorname{tr}(\mathsf{K}^{-1}\bar{\mathsf{S}} - \mathsf{I}))}.$$

Stratified Sampling

- The second method we adapt is stratified sampling.
- Consider a random variable Y with an outcome set $\Omega = \bigcup_{k=1}^{K} C_k$.
- We assume:
- $-\mathbb{P}(Y \in C_k)$ is accessible,
- $-s|Y \in C_k$ is easy to sample.
- Then the stratified sampling takes the following form:

The state-of-the-art algorithm for estimating $tr(\mathbf{K})$ is:

$$h \coloneqq \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}^{(i)^{\top}} \mathbf{K} \mathbf{a}^{(i)}$$

where $\mathbf{a}^{(i)} \in \{-1,1\}^n$ is a random vector with $\mathbb{P}(\mathbf{a}^{(i)}_j = \pm 1) = 1/2$.

- h is unbiased for estimating $\mathrm{tr}(\mathsf{K})$.
- ullet The cumbersome computation is $\mathbf{Ka}^{(i)}$ for N vectors.
- It can be done via sparse Cholesky decompisition, iterative solvers, algebraic multigrid solvers, fast solvers for Laplacian systems...

Random Spanning Forest based Estimators

For an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathsf{W})$:

Fig. 1: Original graph and a rooted spanning forest

Random Spanning Forests (RSF)

$$s_{st} \coloneqq \sum_{k=1}^{K} \left(\frac{1}{N_k} \sum_{j=1}^{N_k} s^{(j)} | Y \in C_k \right) \mathbb{P}(Y \in C_k).$$

• For certain allocations N_k 's, s_{st} has a reduced variance. • We find such a random variable Y in RSFs!

Comparisons with State-of-the-Art

Consider the following parametric distribution over rooted spanning forests:

 $P(\Phi_q = \phi) \propto q^{|\rho(\phi)|} \prod_{\tau \in \phi} \prod_{(i,j) \in \tau} W_{i,j}$

where q is a parameter and $\rho(\phi)$ denotes the set of roots in the forest ϕ . One can sample from this distribution by a variant of Wilson's algorithm in time $\mathcal{O}(|\mathcal{E}|/q)$.

A key result:

 $\mathbb{E}[|\rho(\Phi_q)|] = \operatorname{tr}(\mathbf{K}) \text{ with } \operatorname{Var}(|\rho(\Phi_q)|) = \operatorname{tr}(\mathbf{K} - \mathbf{K}^2).$

Previously, $|\rho(\Phi_q)|$ is used for estimating tr(K). In this work, we improve its performance.

Grenoble Images Parole Signal Automatique UMR CNRS 5216 - Grenoble Campus 38400 Saint Martin d'Hères - FRANCE

