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Introduction Proposed Method

e Linear least-square problems are expensive to solve in large dimensions. X minimizes the following cost function:
e State-of-the-art algorithms consists of approximate methods, both deterministic and F(z) = EZTK—lz B ZTy
stochastic. (
e An interesting stochastic approach is based on determinantal point processes (DPPs). \ Gradient Descent Update as Control Variate
e This approach vyields an unbiased estimator of the solution but still might suffer from We propose to apply the gradient descent update on the previous estimator X:
high variance. z =%x—aK'x—y)
In this work, we propose a simple variance reduction technique for the DPP-based estimator
for estimating the solution of the regularized least square problem. We apply this technique Range of a. For certain values of a, Z have improved performance, ega = 2q+2§max

1= =
on the estimators based on random spanning forests to solve graph Tikhonov regularization. The optimal value is a* = ti&?@lﬁ&—ﬁ){;)'
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where y € R" is a graph signal. L denotes the graph Laplacian of the given graph and x x
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q is the regularization parameter. 12112 11l 4= gr @ ¢ Min-error
The explicit solution to this problem = Fig. 3: An empirical comparison of different choices of «
% = Ky with K = (L + ¢l)" gl Computational cost. A matrix-vector product with L is needed only once.
where | is the identity matrix.
o Direct computation of K requires O(n?) elementary operations due to the inverse. 0
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e For large n, iterative methods and polynomial approximations are state-of-the-art. Both
compute X in linear time in the number of edges |E] Denoising graph signals via Tikhonov regularization:
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Random Spanning Forest based

Estimators
For an undirected graph G = (V, €, W):
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Fig. 4: Graph signal smoothing via Tikhonov regularization illustrated on NYC taxi dataset.
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Fig. 1+ Original graph, a spanning tree, a rooted spanning tree and a rooted spanning forest SSL for node classification aims to classify vertices while the class information (or

Random Spanning Forests (RSF) labels) is available over only a few vertices. Given labels in y; for class [, the solution
(Avrachenkov et.al.) under a smoothness prior regulated by 1 > 0 is the classification

function f; = D'"7KD" 'y, where K = (Q + L)_1 Q and Q = %D.

Consider the following parametric distribution over rooted spanning forests:
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Fig. 2: An illustration for the estimator
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A key result: X is and unbiased estimator of X with the expected error y (K —K )y Fig. 5: SSL via the proposed method on Cora and Citeseer citation networks
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