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Abstract

An extensive range of problems in machine learning deals with data structured over
networks/graphs. The examples vary from drug discovery to traffic forecasting, social
network analysis to recommender systems, or epidemic analysis to natural language
processing. Along with the exploding size and number of data, a big chunk of the
proposed algorithms has focused on analyzing, representing and leveraging the
network structures in the last decades. In many of them, the graph Laplacian is
the central object. They are notable matrix representations of graphs that relate
to various aspects. For example, by analyzing the Laplacian algebraically, one
can measure the connectivity, count the number of spanning trees or generate
a visualization of a graph. Further examples can be found in the problems of
node clustering, graph sparsification, signal processing on graphs and many more.
However, the algebraic analysis of Laplacian can be frustratingly time-consuming
if the graph consists of a large number of nodes. Despite many numerical tools
specialized for the graph Laplacian, in certain cases, the computational time remains
one of the main issues.

Random spanning forests (RSFs), a random process on graphs, is a probabilistic
tool for analyzing graphs with strong links with the Laplacian. In a nutshell, RSFs
provide meaningful random sketches (spanning forests) of the graph to analyze
some properties of interest. These sketches are cheap to obtain by a variant of
Wilson’s algorithm. Moreover, by only looking at a few of them, one can deduce
significant statistical and/or algebraic information on the overall graph. The existing
applications of RSFs, including graph wavelet analysis, semi-supervised learning
on graphs or centrality analysis, show that RSFs provide useful information while
binding diverse aspects of graphs.

In this manuscript, we present ways of leveraging the rich connections between RSFs
and the graph Laplacian to speed up the algebraic analysis. In doing so, we propose
randomized algorithms to approximate several quantities of interest, such as the
regularized inverse of the Laplacian or effective resistances. Interestingly, these
quantities are required in a wide range of applications on graphs, including graph
signal filtering, hyper-parameter tuning, graph-based optimization and sparsification.
We illustrate these methods on real-life networks and compare them with state-of-
the-art methods.
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Resumé
Un large éventail de problèmes d’apprentissage automatique traite des données
structurées sur des réseaux/graphes. Les exemples vont de la découverte de médica-
ments aux prévisions de trafic, de l’analyse des réseaux sociaux aux systèmes de
recommandation, ou de l’analyse des épidémies au traitement du langage naturel.
Parallèlement à l’explosion des données, une grande partie des algorithmes proposés
se sont concentrés sur l’analyse, la représentation et l’exploitation des structures de
réseau au cours des dernières décennies. Dans beaucoup d’entre eux, les laplaciens
de graphes sont les objets centraux. Ce sont des représentations matricielles notables
des graphes qui se rapportent à divers aspects. Par exemple, en analysant les lapla-
ciens de manière algébrique, on peut mesurer la connectivité, compter le nombre
d’arbres spanning ou générer une visualisation d’un graphe. D’autres exemples peu-
vent être trouvés dans les problèmes de regroupement de nœuds, de sparsification de
graphes, de traitement du signal sur les graphes et bien d’autres encore. Cependant,
l’analyse algébrique du Laplacien peut prendre un temps frustrant si le graphe est
constitué d’un grand nombre de nœuds. Malgré de nombreux outils numériques
spécialisés pour les laplaciens, dans certains cas, le temps de calcul reste l’un des
principaux problèmes.

Les Forêts Couvrante Aléatoire (FCA), un processus aléatoire sur les graphes, est un
outil probabiliste pour analyser les graphes avec des liens forts avec les Laplaciens.
En bref, les RSF fournissent des esquisses aléatoires du graphe pour analyser les
propriétés d’intérêt. Ces esquisses sont faciles à obtenir par l’algorithme de Wilson.
De plus, en ne regardant que quelques-uns d’entre elles, on peut déduire des
informations statistiques et/ou algébriques significatives sur le graphe global. Les
applications existantes des FCA, notamment l’analyse des ondelettes des graphes,
l’apprentissage semi-supervisé sur les graphes ou l’analyse de la centralité, montrent
que les FCA fournissent des informations utiles tout en liant divers aspects des
graphes.

Dans ce manuscrit, nous présentons des moyens d’exploiter les riches connexions
entre les FCA et les laplaciens des graphes pour accélérer l’analyse algébrique.
Ce faisant, nous proposons des algorithmes aléatoires pour approcher plusieurs
quantités d’intérêt, telles que l’inverse régularisé du Laplacien ou les résistances
effectives. Il est intéressant de noter que ces quantités sont requises dans un large
éventail d’applications sur les graphes, notamment le filtrage de signaux sur les
graphes, l’ajustement d’hyperparamètres, l’optimisation basée sur les graphes et la
sparsification. Nous illustrons ces méthodes sur des réseaux réels et les comparons
aux méthodes de pointe.
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Glossary

Acronyms

Acronym Description

ADMM Alternating Direction Method of Multipliers
CGD Conjugate Gradient Descent
DPP Determinantal Point Process
GD Gradient Descent
GI Graph Interpolation

GSP Graph Signal Processing
GTR Graph Tikhonov Regularization
LA Linear Algebra

LASSO Least Absolute Shrinkage and Selection Operator
LERW Loop-erased Random Walks

LS Least Squares
RLA Randomized Linear Algebra
RSF Random Spanning Forest
RST Random Spanning Tree
SDD Symmetric Diagonally Dominant

SOTA State-Of-The-Art
USF Uniform Spanning Forest
UST Uniform Spanning Tree

Symbols

Symbol Description

x,y Vectors
A,B Matrices
AS A submatrix of A obtained by reducing it to rows/columns indexed

by S
AS|T A submatrix of A obtained by reducing it to rows indexed by S and

columns indexed by T
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Symbol Description

A−S|−T A submatrix of A obtained by deleting rows indexed by S and
columns indexed by T

A:|−T A submatrix of A obtained by taking all the rows and reducing it to
the columns indexed by T

G A graph
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Introduction 1
„"Graphs are ubiquitous structures."

— Almost any paper on graph ML

Since they first appeared for modeling the bridges of Königsberg, graphs, i.e.a set
of vertices and edges, have been used to model and solve numerous problems in
physics, chemistry, biology, computer science, social sciences and many more. They
are so ubiquitous because they are natural models to use whenever the data represent
mutual relations between individual elements. Today, processing data structured on
graphs is one of the major research questions in signal processing and machine learn-
ing. Voluminous research focuses on leveraging the graph structure to accomplish
advanced tasks, such as managing/analyzing Internet (a colossal computer network),
understanding the human brain [FKL19], drug discovery [JWHCLWSCWH21], ana-
lyzing social networks [OR02] or large-scale traffic forecasting/planning [HLDNC17].
Further examples appear in natural language processing [NMR15], finance [MP20],
food networks [DWM04], power grid networks [PA13] and many more. In many
of these examples and others, graphs come with some features/signals, also called
graph signals, on the vertex set. Here are some examples:

• Transportation networks [HLDN19]: A prominent example is road network.
In a typical setup, each location corresponds to a node, and two nodes are
connected by an edge whenever there is a road between them. The signals
over such networks are usually some traffic features, such as the traffic speed
or volume.

• Social networks [VMS21]: In many social studies, along with the individual
information over the subjects, the structure of their interactions is also of
central importance. Social media networks such as Facebook and Twitter are
probably the most-known examples. In those cases, every user is considered
a node and two nodes are connected if there is an interaction between the
corresponding users, such as friends on Facebook or followers on Twitter. Given
this graph/network structure, any feature of a user, such as their likes/dislikes,
can be analyzed as a graph signal.
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(a) Traffic data collected by a network of sen-
sors in Grenoble [WMOKBB]

(b) Twitter friendship network of the authors
of the tweets that the user @PilavciYigit
liked until 29/06/2022.

(c) A partial map of Internet (d) Temperature sensor network over Bretag-
ne/France [PV17]. The red colour depicts
higher average temperatures.

(e) Human Brain Connectivity [HBM-
BRV17]

(f) Gene regulatory net-
work [MKGS14]

Fig. 1.1.: Real-life examples of graphs
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• Temperature networks [PV17]: A temperature network is a network of temper-
ature sensors over a region in which each sensor is a node. Here the edges can
be established according to different criteria. The common practice is to build
the nearest neighbour graph from the proximity of the sensors. The signal,
in this case, is naturally the temperature measurements collected from the
sensors.

• Neurological networks [HBMBRV17]: Given numerous unanswered questions,
the analysis of the brain is indeed an exciting and arduous task. The graph-
based study, in fact, gives a natural way to analyze brain signals. In this type of
analysis, we often consider the different regions of the brain as the nodes and
the edges are established according to their structural or functional properties
such as correlation in their activities. Analyzing neurological signals over such
a network can decipher interesting information about the brain.

• Other biological networks [GDJSRLHVRT+21; CPFSC21; YB20]: The brain is
not only the biological subject of graph-signal analysis. In the vast literature,
we find many studies related to drug discovery, analysis of protein structures
or gene interactions.

Given the large volume and diversity of such datasets, developing appropriate tools
for processing and analyzing them has become quite central. In fact, research
in machine learning and signal processing for graphs and graph signals has been
emerging in the last decades [OFKMV18; RBTGV19]. In turn, these tools have
been used for solving real-life problems varying from fake-news detection in social
media [MFEMB19] to spread analysis for COVID-19 [PNV21], from decoding brain
signals [OTLFPG22] to weather forecasting [Kei22], and so on. In most of these tools
and methods, the matrix representations of graphs, especially the graph Laplacian,
are of significant importance.

Graph Laplacian. Many analysis tools extract information from the matrix represen-A Path Graph

Its Laplacian L 1 −1 0
−1 2 −1
0 −1 1


tations of the graphs, particularly from the graph Laplacian. The graph Laplacian is
a symmetric square matrix in the size of number of the vertices. It can be considered
as the discrete Laplacian operator on graphs when applied to a function over the
vertices:

(Lf)i =
∑

j∈N (i)
(f(i)− f(j)),

where N (i) denotes the nodes that share an edge with node i (formal definition
can be found in Section 2.1.1). The graph Laplacian is a simple but useful matrix
representation of graphs. The algebraic analysis relates them with many useful
properties of graphs. For example, many tasks in connectivity analysis of the
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graph can be accomplished by observing the eigendecomposition of the graph
Laplacian. Simply by looking at the multiplicity of zero eigenvalues, one can count
the number of connected components i.e. disconnected sub-parts of the graph.
Moreover, the second smallest eigenvalue, also called spectral gap, gives a measure
of the connectivity of the graph, which is mainly used in applications of stability
and robustness of dynamic networks. Similarly, the corresponding eigenvector, also
known as the Fiedler vector, yields the sparsest cut partition of the graph i.e. the
partition that leaves the least number of edges inter-parts. Spectral graph drawing
is another problem that uses the eigendecomposition of graph Laplacian. In this
problem, one seeks a drawing (a mapping from vertices to Euclidean coordinates)
of a graph that minimizes the distance between the vertices that are close to each
other in the graph. It turns out that certain eigenvectors of graph Laplacian is the
analytic solutions to this problem. Closer to the main themes of this thesis, we find
an interesting link between the eigenvalues of L to the enumeration of a certain type
of sub-graphs. In particular, the celebrated Kirchoff’s matrix-tree theorem states

A spanning tree.
Its edges are
given in red,
and the dashed
lines indicate
the edges of the
graph.

that the product of the non-zero eigenvalues of L equals the number of all spanning
trees, i.e. connected sub-graphs that contains no cycles, on a graph.

Apart from these examples, the graph Laplacian has an important role in analyzing
electrical resistor networks. In these networks, we model each resistor by an edge
where the edge weight depicts the conductance of the resistor, and each node
corresponds to its connection points. These models are extensively employed in
circuit theory in order to calculate the currents flowing through the resistors/edges
or the voltages induced at the nodes when a fixed potential difference (voltage) is
applied between two (or more) nodes. Surprisingly, these calculations boil down to
solving linear systems involving the graph Laplacian (See Chapter 4).

In the last decades, even more, examples have emerged in signal processing and
machine learning involving graphs.

Laplacian in graph signal processing. Graph Signal Processing (GSP) is the sub-
field of signal processing that deals with the signals defined over the vertices of
the graph. In the last decade, many of the classical signal processing tools have
been adapted in order to deal with such signals. Examples include filtering [SVF11;
SNFOV13], sampling [TAB17; PTGV18], translation operation [SNFOV13], wavelet
analysis [HVG11; NO12; ACGM20] or uncertainty principle [TBD16]. In many of
these adaptations, the graph Fourier transform plays a significant role. By analogy,
it allows to represent the graph signals in the graph frequency domain. In turn,
one can define graph translation and filtering schemes by using an analogous of the
celebrated convolution theorem [OBS01]. However, due to the irregularity of the
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domain of the signal, the definition of the Fourier transform is not straight-forward.
One popular definition in GSP builds an analogy on the fact that the eigenfunctions
of the Laplacian operator are the basis functions in the Fourier transform. Develop-
ing on this, the authors in [SNFOV13] suggest using the eigenvectors of the graph
Laplacian as the Fourier basis and the eigenvalues as the graph frequencies. In
this way, higher eigenvalues correspond to a higher frequency component in the
Fourier analysis. By projecting the signal on these basis, one can calculate the graph
frequency response of the signal to each component.

Laplacian in machine learning. An early use of the graph Laplacian occurs in the
semi-supervised learning on graphs [Zhu05; AMGS12]. In this problem, we are given
a few labels over the vertices and the goal is to infer the labels of the others by using
the given labels and the underlying graph. A baseline solution given by [Zhu05]
suggest using the graph Laplacian to formulate this problem. Their main assumption
is that the labeling function is fixed at a subset V ⊂ V and smooth over the rest
U = V \ V , i.e.it does not vary too much through the edges. For K classes of labels,
this formulation seeks a classification function F : V × {1, . . . ,K} → R such that
for each node i, argmaxk F (i, k) yields the label of node i. Let us denote the known
labels by Y ∈ R|V |×K , then, [Zhu05] suggest solving the following constrained
problem:

F ? = argmin
F

∑
i∈U

∑
j∼i

(F (i)− F (j))2

s. t. ∀i ∈ V, k ∈ {1, . . . ,K}, F (i, k) = Yi,k,

In fact, the minimized term can be written in terms of the graph Laplacian as FLUF
where F = [F (i, k)]i∈U,k∈{1,...,K}. Moreover, the closed form solution involves the
following in the graph Laplacian:

F ? = (LU )−1LU |V Y.

Later on, this formulation is considered in an unconstrained setup and generalized
in [AMGS12]. In these forms as well, the solution takes the form of the matrix
inverse of the graph Laplacian. More recent examples in machine learning that
extensively use graph Laplacian include spectral clustering [Von07; TPGV16], graph
embedding [Xu21], sparsification [SS11] and deep learning on graphs [WPCLZP20].
In all of these applications and many more, the analysis of L is of utmost impor-
tance.

Laplacian-based Numerical Algebra. As listed above, the number of applications
involving the graph Laplacian is myriad. In many of these applications, the solution
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requires computing an (regularized or pseudo) inverse or eigendecomposition of
the graph Laplacian. However, computing these quantities directly does not scale
well with the size of the graph and even becomes impractical for very large graphs.
In turn, many researchers have focused on developing numerical algebra tools
specified for Laplacian. The most prominent ones are closely related to spectral
graph theory [Spi12] and solving Laplacian linear systems [Vis+13]. These studies
give a rich collection of algebraic tools that avoid the expensive direct computation
and, instead, approximate the required solution within certain error ranges. In
doing so, they leverage some common properties of the graph Laplacian, such as its
algebraic properties, its strong links with graph theory, or the sparsity of real-life
graphs. Compared to these works, we take in this thesis an alternative path by using
randomization in order to develop Laplacian-specific algebraic tools.

Randomized Linear Algebra (RLA). In a nutshell, RLA is a set of tools that avoid
the direct computation of an algebraic operation via randomization. The main
advantage of these tools is that they can approximate very expensive operations such
as matrix inversion, and singular value decomposition, very cheaply by only taking
random samples from the input matrix. More details and examples can be found
in [DM16]. Closer to the themes of this thesis, [DM21] show that determinantal
point processes (DPP), i.e. a random point process with many tractable properties,
can be easily adapted as RLA algorithms in order to solve linear systems involving a
large set of input matrices covering the graph Laplacian. Inspired by these examples
and many more, we focus on a particular determinantal point process that allows us
to develop randomized tools for Laplacian-based numerical algebra.

Random Spanning Forests (RSF). A forest in a graph is a subgraph which contains
no cycle in it. It is called spanning if it contains all the vertices of the graph. Finally,

A spanning for-
est with three
trees. The edges
of the forest are
in red, and the
graph is depicted
by dashed lines.

the random spanning forests are the random processes where we choose spanning
forest at random on a given graph. One can come up with infinitely many options
for the distribution of such a process. In this thesis, we focus on the distribution
introduced in [ACGM18]. A particular case of this distribution coincides with the
uniform spanning trees which is the process of uniformly selecting a spanning tree.
They are well-known objects in probability theory, computer science and statistical
physics [Gri04]. In this distribution, the probability of having a fixed spanning forest
is mainly regulated by the weights of its edges and the number of its connected
components (trees). We restrict ourselves to this distribution due to two main
reasons:

• The RSFs sampled from this distribution have rich theoretical connections with
the graph Laplacian via certain DPPs,

6 Chapter 1 Introduction



• There exists an efficient algorithm to sample from this distribution, called
Wilson’s algorithm.

Thanks to these facts, we know that the samples of RSFs can be obtained cheaply,
and their algebraic properties closely relate to the algebraic properties of the original
graph. The main goal of this thesis is to leverage these facts in order to develop RLA
algorithms for Laplacian-based numerical algebra.

The main contributions of this thesis can be listed as follows:

• We shed light on the rich connections of RSFs with determinantal point pro-
cesses and the graph Laplacian; We go through the elegant theory and useful
properties of RSFs as DPPs. Throughout our tour, while for some of the prop-
erties, we reproduce the existing proofs, for some others, we give mostly
algebraic proofs that are more accessible for the researchers from different
domains (See Theorems 2.4.4, 2.4.5).

• In turn, we develop and analyze RLA algorithms based on RSFs for approximat-
ing the solutions of a wide variety of problems involving the graph Laplacian.
These problems are:

– Tikhonov regularization and interpolation for graph signals: The
problem of denoising, i.e. removing noisy parts of a signal, and completing
missing parts of a signal are long-standing problems in signal processing.
We first give a unifying optimization framework for these problems for
graph signals i.e. signals defined over vertices. Then, we give novel
randomized algorithms that approximate the solution for this framework.

– Estimating the trace of regularized inverse of symmetric diagonally
dominant (SDD) matrices: Trace (sum of diagonal entries of a matrix)
is a central operation in linear algebra. However, computing the trace
of a matrix is a challenging problem whenever the input matrix is not
directly accessible e.g. multiplication of large matrices or inverse of a
large matrix. We give novel algorithms based on RSFs for estimating the
regularized inverse of SDD matrices (a class of matrices that contain the
graph Laplacian). In turn, our algorithms are at least comparable, and
they usually outperform state-of-the-art methods.

– Estimating effective resistances in electrical networks: Effective resis-
tance is a metric that takes its root from electrical resistor networks1 and

1Graph representation of an electrical resistor networks takes every edge as a resistor with a unit
conductance. The conductance equals the weight of the edge for weighted graphs.
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they are used for measuring the similarity of a pair of nodes. They play
a central role in many graph-related applications such as graph sparsifi-
cation, clustering or graph learning. However, the computation of this
useful quantity does not scale well with increasing sizes of graphs as one
needs to invert a graph Laplacian. To avoid this expensive computation,
we give RSF-based algorithms to estimate effective resistances. The pro-
posed methods are comparable and even better than the state-of-the-art
algorithms when the number of desired effective resistances is small.

– Estimating various graph filters: This aspect of our work makes inter-
esting links between RSFs and graph filtering i.e. spectral signal filtering
for graph signals [TGB18]. Graph filtering is an essential tool for dealing
with these type of signals and have been used in various applications. Yet
again, the associated computations often require diagonalizing L, which
is expensive. In this work, we give a set of graph filters that can be
approximated via RSF-based estimators by avoiding the diagonalization
of L. These filters either cover or can mimic by optimizing a few hyperpa-
rameters some of the frequently used filters, such as the ideal low-pass
filter.

• We provide a bias-variance analysis of the proposed algorithms for stating their
theoretical performance.

• We illustrate these algorithms in real-life applications and datasets while
comparing these algorithms with the existing algorithms.

The main structure of the thesis is as follows; we start by giving necessary technical
machinery in Chapter 2 on graph theory, randomized linear algebra and random
spanning forests. Then, by Chapter 3, we introduce the RSF-based methods for
solving graph Tikhonov regularization. We compare these methods with existing
methods and show their uses in other graph-related problems while illustrating
real-life applications. In Chapter 4, we extend the range of RSFs-based methods
into a new set of problems, including estimating the trace of regularized inverse
of SDD matrices, effective resistances and certain graph filters. Finally, we finish
in Chapter 5 with a general conclusion, discussion on open questions and future
works.

The peer-reviewed publications associated with this thesis can be found in the
following:
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• Yusuf Yiğit Pilavcı et al. “Variance Reduction for Inverse Trace Estimation via
Random Spanning Forests”. In: GRETSI 2022 - XXVIIIème Colloque Francophone
de Traitement du Signal et des Images. Nancy, France, Sept. 2022

• Yusuf Yiğit Pilavcı et al. “Variance reduction in stochastic methods for large-
scale regularised least-squares problems”. In: arXiv preprint arXiv:2110.07894
(2021)

• Yusuf Yiğit Pilavcı et al. “Graph tikhonov regularization and interpolation via
random spanning forests”. In: IEEE transactions on Signal and Information
Processing over Networks 7 (2021), pp. 359–374

• Yusuf Yiğit Pilavcı et al. “Smoothing graph signals via random spanning forests”.
In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2020, pp. 5630–5634

Also, some materials are introduced in my master thesis [PIL19].
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Background 2
„Mathematics compares the most diverse

phenomena and discovers the secret analogies
that unite them.

— Joseph Fourier

In this chapter, we go through the necessary technical definitions and tools to be able
to explain the main contributions of this thesis. We collect these diverse materials
under four sections:

• Graph theory contains the basic definition of a graph, graph matrices (e.g. ad-
jacency, Laplacian etc.), graph-related structures (e.g. walks, paths, cycles,
trees, forests etc.), random processes on graphs.

• Determinantal Point Process (DPP) contains the basic definitions on DPP
and their useful properties.

• Randomized Linear Algebra (RLA) presents the use of randomization for
numerical linear algebra with emphasis on least-squares problems.

• Random Spanning Forest (RSF) introduces a random object on graphs, called
random spanning forests, which has fascinating probabilistic properties.

As they are listed above, these concepts might seem unconnected. However they
have elegant mathematical links that tie them to each other. One of the main goals
of this chapter is to bring these links to spotlight.

Contents
2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Graph Matrices . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Random Walks on Graphs . . . . . . . . . . . . . . . . . 21

2.2 Determinantal Point Processes . . . . . . . . . . . . . . . . . . . 25
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2.3.1 Linear Least-Squares Problem . . . . . . . . . . . . . . . 31

2.3.2 Approximate Methods for Solving LS Problem . . . . . . 33
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2.3.3 Deterministic Methods . . . . . . . . . . . . . . . . . . . 33

2.3.4 Randomized Algorithms . . . . . . . . . . . . . . . . . . 37

2.4 Random Spanning Forests . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Wilson’s algorithm . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 DPPs in Random Spanning Forests . . . . . . . . . . . . 47
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2.5.2 Determinantal Point Processes and Randomized Linear
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2.5.3 Random Spanning Forests . . . . . . . . . . . . . . . . . 58

2.1 Graph Theory

We dedicate this section to defining all graph-related objects, which will be repeatedly
used in the rest.

Definition 2.1.1 (Graph). A graph G = (V, E , w) is a triple which consists of n
nodes/vertices V = {v1, v2, . . . , vn}, m edges connecting the vertices E ⊆ V × V
and the weight function w : V ×V → R≥0 which maps every edge (i, j) ∈ E to a
positive real value, and w(i, j) = 0 for any pair (i, j) 6∈ E .

In many problems of physics, mathematics, biology, computer science and machine
learning, the data are known up to pairwise relations of data points. In such cases,
graphs/networks are natural choices to interpret, visualize or analyze the data. In
doing so, certain distinctions over graphs facilitate the understanding of real-life
networks. Let us list them in the following paragraphs:

A directed graph is a graph in which every edge (i, j) has an orientation from i to j
and w(i, j) is not necessarily equal to w(j, i). If all edges in G verifies w(i, j) = w(j, i),
then we call it an undirected graph as the orientation of the edges are no longer
informative about the graph 1. The weight function w of a graph G maps every
edge to either 1 or 0, i.e. ∀(i, j) ∈ E , w(i, j) ∈ {0, 1}, then G is called unweighted.
We denote the neighbors of a node i as N (i) := {j : j ∈ V and (i, j) or (j, i) ∈
E}, i.e. the set of nodes which has an incident edge (j, i) or (i, j) in G. The sum
di :=

∑
j∈N (i)w(i, j) is called the degree of node i.

1Undirected graphs are often defined as the graphs in which all edges are bidirectional. Our definition
here is equivalent to this and more generalized by using the edge weights
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Fig. 2.1.: One can obtain completely different graphs for the same degree distribution. First,
we generate a graph (b) from Barabasi-Albert model [AB02] (a statistical model
for generating a random graph) with n = 1000 and the model parameter k = 1.
Then, we pass its degree distribution given in (a) to the Kalisky model [KCbH04]
(a statistical model for generating a graph given a degree distribution) to generate
another graph (c) that has the same degree distribution.

The degrees d1, d2, . . . , dn are limited but useful devices for characterizing graphs.
They are often analyzed by statistical tools. In particular, the degree sequence
d1, d2, . . . , dn of a graph is considered as a sample of a probabilistic model, also
called a degree distribution. In this way, one can reduce large and complex real-life
networks to some degree distributions with a few hyper-parameters. However, when
it comes to detecting finer details of the graph, the degree distribution might fail.
We illustrate such a case with a toy example in Fig. 2.1. In a nutshell, we show that
we can obtain two graphs with completely different characteristics whereas they
have exactly the same degree sequence. In this case, it makes sense to take our focus
on some of the substructures of a graph that contain descriptive patterns, such as
connected components, paths, cycles or trees. We finish this section by giving the
formal definitions of some of such substructures.

Definition 2.1.2 (Subgraph). A graph H = (Vs, Es, ws) is a subgraph of a graph
G, if it verifies Vs ⊆ V, Es ⊆ E and ws(i, j) = w(i, j) for all (i, j) pairs.

Definition 2.1.3 (Walk). A walk on G starting from node s and ending at node
t is a sequence of edges ω = (e1, e2, . . . , el) which joins a sequence of vertices
(s, . . . , t).

12 Chapter 2 Background



(a) A graph (b) A subgraph

ω1

ω2
ω3

ω4ω5ω6

(c) A walk on G

(d) A cycle on G (e) A path on G (f) A spanning tree

(g) A spanning forest (h) A rooted
spanning tree

(i) A rooted
spanning forest

Fig. 2.2.: Given a graph in (a), this figure illustrates a subgraph (b), a walk (c), a cycle (d),
a path (e), a spanning tree (f), a rooted spanning tree (g) and a rooted spanning
forest (h). The blue nodes in (g) and (h) indicates the root nodes.

Definition 2.1.4 (Cycle). A cycle is a walk whose starting and ending point is
the same node.

Definition 2.1.5 (Path). A path is a walk which does not include any cycle.

Definition 2.1.6 (Connectivity). Any two nodes s and t are called connected
whenever there exists at least one path in G that joins them. Otherwise, they
are called disconnected.

Definition 2.1.7 (Connected Component). A connected component of a graph
is a maximal connected subgraph.

2.1 Graph Theory 13



Definition 2.1.8 (Spanning Tree). A tree, denoted by τ = (Vτ , Eτ , w), is a
subgraph which contains no cycle in it. If Vτ = V, then τ is called a spanning
tree.

Taken from short-
url.at/cfkpuDefinition 2.1.9 (Rooted Spanning Tree). A rooted tree is a directed tree in

which every edge is oriented towards a special node called the root.

Definition 2.1.10 (Rooted Spanning Forest). A rooted forest, denoted by φ =
(Vφ, Eφ, w), in G is a set of disjoint rooted trees with Vφ ⊆ V, Eφ ⊆ E . Similarly,
if Vφ = V, φ is called a rooted spanning forest.

We illustrate some of these graph structures in Fig. 2.2

2.1.1 Graph Matrices

Matrix representations of graphs are helpful tools to examine probabilistic, algorith-
mic and combinatorial aspects of graphs. In this section, we will revisit the essential
matrix representations of graphs.

The simplest matrix representation of a graph is the (weighted) adjacency matrix,
defined as W := [w(i, j)]i,j ∈ Rn×n. Another simple matrix, called the degree matrix,
contains the degrees in a diagonal matrix D where ∀i ∈ V, Di,i := di. Finally, we
define the combinatorial graph Laplacian as L := D −W. One can find various
ways to define the Laplacian operator for graphs, such as the normalized Laplacian
I− D−σWDσ−1 with σ ∈ {0, 1}. In this thesis, we refer to L as the graph Laplacian
unless otherwise stated. We stress that there are various theoretical properties of L
which connect diverse concepts such as determinantal point process [BP93], combi-
natorics [CK78], computer science and graph signal processing [SNFOV13]. This
thesis aims to give a unifying view of these concepts and leverage the connections for
randomized linear algebra applications. Thus L is an object of central importance.

The edge incidence matrix B ∈ Rm×n is a less common but still useful representation
of graphs. It depicts the orientation of the edges as follows:

∀i, j, Bk,i =


−
√
w(i, j), ek = (i, j) ∈ E√

w(j, i), ek = (j, i) ∈ E

0, otherwise
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In case of undirected graphs, we retain B in this form by encoding every undirected
edge ek = (i, j) as Bk,i = −

√
w(i, j) and Bk,j =

√
w(i, j), for all i < j without loss

of generality. The following identity relates B with the graph Laplacian L:

L = B>B. (2.1)

This relation also proves the positive semi-definiteness of L.

Spectral properties, i.e. eigen/singular value decomposition, of these matrices, are
studied within many fields, from signal processing [SNFOV13] to clustering [Von07].
Similarly, they are of central importance in this thesis. Therefore, we revisit some of
these properties and their uses in the rest.

We generically write the spectral decomposition of W as W = PΞR> where P =Spectrum of
W [p1| . . . |pn] and R = [r1| . . . |rn] contain the left and right eigenvectors pi ∈ Cn and

ri ∈ Cn, and Ξ is the diagonal matrix containing the eigenvalues ξ1 ≤ ξ2 ≤ . . . ≤ ξn.
For an undirected graph, the adjacency matrix W is entry-wise nonnegative and
symmetric, thus P = R. The spectrum of W is insightful for understanding the
structure of the graph. For example, the multiplicity of the largest eigenvalue gives
the number of connected components in the graph. Another example is that if the
eigenvalues are symmetric with respect to 0, i.e. ∀i ∈ 1, . . . , n, ξi = −ξn−i, then the
graph is bipartite.

As W is an entry-wise non-negative matrix, it is possible to examine its spectrum
with the celebrated Perron-Frobenius theorem [Per07; FFFFM12]. Along with other
properties, the Perron-Frobenius theorem associates the largest eigenvalue with a
positive eigenvector. An influential application of this property in directed graphs
takes place in the famous algorithm of Google, called PageRank [PBMW99] for
sorting web pages by their relevance given their hyperlink graph i.e. whenever a
page links to another, there is a directed edge between them. PageRank approximates
different websites according to their ranking score, which is based on the principal
eigenvector of the graph of the world wide web (WWW) (See Example 2.1.1).

A $25 Billion Algorithma

aThe approximate market value of Google in 2004 [BL06]

Information retrieval i.e. retrieving the relevant information in a humongous
amount of data is a long-standing problem in computer science. In the last
two decades, research in this field has provided many efficient tools with
the help of machine learning and computer science. Google’s web search
engine has been probably the most popular one. In the early stages of search
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engines, one main issue was efficiently ordering different web pages in search
results according to their relevancy. In [PBMW99], the founders of Google
proposed the celebrated PageRank algorithm to rank web pages, which relies
on probability and algebraic graph theory.

Fig. 2.3.: Given a graph (in the left), PageRank is an algorithm to rank nodes according
to their importance in the graph. In the right, we plot the graph by resizing
the nodes according their PageRank scores. Bigger nodes have higher scores.

Consider the hyperlink graph of the world wide web (WWW) in which each
website is a node, and there is a directed edge whenever there is a hyperlink
from one to another. Given such a graph, one seeks to assign a ranking score
ri to each node/web page i. The PageRank algorithm proposes to use the
ranking scores ri’s which verify:

∀i ∈ V, ri = 1
di

∑
j∈N (i)

w(i, j)rj ≥ 0.

Intuitively, the ranking scores of its neighbours define the ranking score of a
node. The web pages pointed by the pages with high scores have higher scores.
Besides, this formulation corresponds to solving the following eigenvector
problem:

r = D−1Wr.

By the Perron-Frobenius theorem, we know the largest eigenvalue is 1a and
it is associated with an entry-wise positive eigenvector r. PageRank draws
a simple iterative scheme, also called the Power method, to estimate r as
follows:

r(k+1) =
(

D−1W
)

r(k),

starting from arbitrary initialization r0. As k goes to infinity, rk converges to
r. An illustration of this algorithm is in Fig. 2.3.

aThis is due to the bounds on the spectral radius given by the Perron Frobenius theo-
rem i.e. mini

∑n

j=1(D−1W)i,j = 1 ≤ ρ(D−1W) ≤ maxi
∑n

j=1(D−1W)i,j = 1
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Similar to the adjacency matrix, the spectrum of the (combinatorial) graph Laplacian
L also provides many interesting insights into the graph. We detail some of them for
undirected graphs as they are of central importance for the main concepts of this
thesis. Let us denote the eigen-decomposition by L = UΛU> where U = [u1| . . . |un] ∈
Rn×n contains the eigenvectors ui’s in the columns and Λ is the diagonal matrix
which consists of the eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λn in its diagonal entries.
Note that L is a positive semi-definite matrix as L = B>B, and its smallest eigenvalue
is 0. The multiplicity of the smallest eigenvalue at 0 equals the number of connected
components. Moreover, the second smallest eigenvalue λ2, also called algebraic
connectivity or Fiedler value, is considered a measure of the connectivity of the
graph. For example, if the graph has two connected components, then one also has
λ2 = 0, and it increases as one adds edges connecting the two components. Another
significant property of L is due to the matrix-tree theorem [Kir47]:

Theorem 2.1.1 (Matrix-Tree Theorem). Given a graph Laplacian L of a connected,
unweighted and undirected graph, let T be the set of all spanning trees. Then, one
has:

∀i ∈ V, |T | = det L−i|−i

where L−i|−i is the submatrix of L obtained by deleting i-th row and column.

Proof. Among many possible proofs of the matrix-tree theorem, we prefer to
provide an algebraic one which will be re-invoked in the further chapters. The
Cauchy-Binet determinant formula yields:

det L−i|−i =
∑
S⊆E
|S|=n−1

det BS|−i det(B>)S|−i,

=
∑
S⊆E
|S|=n−1

(det BS|−i)2.

Now we invoke a technical result from [Van10] which is attributed to Poincaré.
To do so, we consider the square submatrices of the edge incidence matrix B in
size of (n− 1)× (n− 1). Notice that the rows and columns of such submatrices
are respectively indexed by n− 1 edges and nodes of the graph. Let us denote
these edges and nodes by S ⊂ E and −i = V \ i. Theorem 2 in [Van10] states
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that det BS|−i equals to ±1 if and only if S is a spanning tree of G. Otherwise it
equals to 0. Plugging this result in the Cauchy-Binet formula finishes the proof:

det L−i|−i =
∑
S⊆E
|S|=n−1

(det BS|−i)2 =
∑
S⊆E
|S|=n−1

I(S is a spanning tree)

where I is the indicator function.

At last but not least, we detail the spectral decomposition of B. Let us denote its
singular value decomposition by B = VΣU> where V = [v1| . . . |vn] ∈ Rm×m and
U = [u1| . . . |un] ∈ Rn×n are the orthonormal basis and Σ ∈ Rm×n is a rectangular
diagonal matrix which contains the singular values σ1 ≤ . . . ≤ σn in its diagonal
entries. Note that U is also the orthonormal basis of L and ∀i ∈ V, one has λi = σ2

i

as an immediate result of the identity in (2.1). As mentioned in the proof of
Theorem 2.1.1, Poincaré’s theorem [Van10] makes interesting connections between
the edge incidence matrix B and the spanning trees of the corresponding graph.
These links are of central importance for this thesis. Thus, to conclude our visit on
algebraic graph theory, we reproduce and extend this theorem for weighted graphs
and spanning forests.

Proposition 2.1.2 (Poincaré for weighted graphs). Consider a weighted graph
G = (V, E , w) with an edge incidence matrix B. If S ⊆ E with |S| = |V| − 1 is the

edges of a spanning tree, then, |det BS|−m| =
[ ∏

(i,j)∈S
w(i, j)

]1/2

for all m ∈ V.

Otherwise, | det BS|−m| = 0.

Proof. See App. A.2.

Developing on this theorem gives the following extension on spanning forests:

Theorem 2.1.3 (Poincaré for forests). Given a graph G = (V, E , w) with an edge
incidence matrix B, consider a vertex subset R ⊆ V and an edge subset S ⊆ E with
|S| = |V| − |R|. If S is an edge subset such that

• S forms a spanning forest with |R| trees,

• S does not form any path between the nodes of R (for rooted forests, R is
the root set.),
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then, | det BS|−R| =
∏
r∈R

[ ∏
a,b∈Sr

w(a, b)
]1/2

=
[ ∏
a,b∈S

w(a, b)
]1/2

where Sr is the

edge set of the tree that contains node r ∈ R and S =
⋃
r∈R

Sr. Otherwise, this

absolute determinant is equal to 0.

Proof. As long as S forms a spanning forest, it includes |R| disconnected trees
due to the fixed number of edges in trees (i.e.a tree with t nodes consists of
exactly t − 1 edges). Similar to Theorem 2.1.2, the rest of the proof is also
two-fold: In the first part, we consider the case that the given conditions hold.
In the second, otherwise is examined to finish the proof.

Assume that S forms a spanning forest with |R| trees and it does not include
any path between the nodes in R = {r1, . . . , r|R|}. Then, each tree in such forest
contains exactly one distinct node r ∈ R. This allows us to write a row-column
permutation of square matrix BS|−R in the following form:

perm(BS|−R) =



B(r1)
Sr1 |−r1

B(r2)
Sr2 |−r2

. . .

B(r|R|)
Sr|R| |−r|R|


where perm(BS|−R) is a particular row-column permutation of BS|−R in which
each tree’s reduced edge incidence matrix B(r)

Sr|−r appears in the diagonals. The
absolute determinant of this block diagonal matrix writes:

|det
(
perm(BS|−R)

)
| =

∏
r∈R
| det B(r)

Sr|−r|

where | det B(r)
Sr|−r| is equal to

[ ∏
a,b∈Sr

w(a, b)
]1/2

due to Prop. 2.1.2. Noticing

|det
(
perm(BS|−R)

)
| = | det BS|−R| writes:

| det BS|−R| =
∏
r∈R

 ∏
a,b∈Sr

w(a, b)

1/2

=

 ∏
a,b∈S

w(a, b)

1/2

and finishes the first part of the proof. The contrary of the constraints given in
the theorem yields either S includes a cycle or there exists a path between the
nodes in R. In the former case, | det

(
perm(BS|−R)

)
| =

∏
r∈R
|det B(r)

Sr|−r| results
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in 0 because whenever a subset Sr contains a cycle, | det B(r)
Sr|−r| becomes 0 due

to Theorem 2.1.2. For the latter, we consider a generic path between the nodes
in R as shown in Fig. 2.4.

1

2

3
...

k

r

p

Fig. 2.4.: A generic path between nodes in R (in blue)

The reduced edge incidence matrix for a graph with this path writes:

B{S|−R} =



w(r, 1) 0 . . . 0
−w(1, 2) w(1, 2) 0 . . . 0

0 −w(2, 3) w(2, 3) 0 . . . 0
...

. . .

0 . . . 0 −w(k, p)

0

X Y


Regardless of matrices X and Y (and so, the rest of the graph), we can conclude
that this matrix is singular (i.e. det BS|−R = 0) because it has a non-zero right
null vector xT =

[
1 w(r,1)

w(1,2)
w(r,1)
w(2,3) . . . w(r,1)

w(k,p) 0
]

which gives xTBS|−R = 0T .
Notice that a direct edge from r to p is a particular case of this generic path
which generates a zero row in BS|−R. Moreover, choosing r = p does not alter
the given matrix form. This completes the second part and the proof.

Remark 1 (Switching to rooted trees/forests). Notice that in both theorems (and
also for the whole thesis), we work on undirected graphs. Thus we omit the
orientation within the trees and forests for the sake of simplicity. However these
objects are still considered to be rooted trees/forests by setting the corresponding
orientation. For example, in Theorem 2.1.1, the root of the spanning trees counted
by the determinant is the deleted row/column index i i.e. |Ti| = det L−i|−i. This is
correct because of the following lemma.
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Fig. 2.5.: Given a spanning tree, there is a unique orientation per node that makes the
corresponding node the root of the tree.

Lemma 2.1.4 (Unique Orientation). Let τ be a undirected tree and let us assign
an orientation to each edge. Then, we define an orientation of a tree as the set of
the directed edges in it. Over all possible orientations for τ , there exists only one
unique orientation for an arbitrary node i ∈ V such that τ and this orientation
together yield a tree rooted in node i.

Proof. Consider a simpler case where τ is a single path. In this case, the only
orientation that makes node i the root is the orientation in which all edges are
oriented towards i. Then, for more generic trees, we recall that in a tree, two
nodes are connected only by a single path. As we have one particular orientation
for each path, putting them together yields one unique orientation for τ to be
rooted in i.

Thus, one has |Ti| = |T | = det L−i|−i. In the case of forests and Theorem 2.1.3, the
vertex set R is considered as the root set since they are ensured to be in separate
connected components. Then the number of all spanning forests with the root set R
reads:

|FR| = det L−R.

2.1.2 Random Walks on Graphs

A random walk W on a graph is a stochastic process that starts from a node s,
and at every step it goes to another node with a probability w(i,j)

di
. As a result, the

probability of having a fixed walk ω in this process equals to:

P(W = ω|W0 = s) =
∏

(i,j)∈ω

w(i, j)
di

, (2.2)

Such random walks naturally are discrete Markov chain.
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Definition 2.1.11 (Discrete Markov Chain). A discrete Markov chain M(i) is
a random process over a discrete state space V that satisfies the Markovian
property for all k ∈ N, i, jk ∈ V:

P(M(k) = i|M(k−1) = jk−1, . . . ,M(1) = j1) = P(M(k) = i|M(k−1) = jk−1).

Markov chains are often described by their transition probabilities i.e. the probability
of switching from one state to another. A transition matrix P = [P(M(k) = i|M(k −
1) = j)]i,j∈V is the matrix that contains these probabilities. We associate a Markov
chain with a graph by setting the vertices as the state space and the edges as the
transitions with non-zero probabilities. One can generate random walks distributed
according to Eq. (2.2) by simulating the Markov chain with the following transition
probabilities:

P(M(k) = j|M(k − 1) = i) = w(i, j)
di

. (2.3)

To better understand Markov chains, we revisit some of their useful properties. We
list them in the following with short descriptions:

• Periodicity: The period of a state x is defined as:

p(x) = gcd(n ∈ N+ : Pn(x, x) > 0).

where gcd returns the greatest common integer divisor of a given set. A state
x in a Markov chain is called periodic if p(x) > 1. Otherwise, it is called
aperiodic. If all states are aperiodic, the Markov chain is called aperiodic.

• Transient/Recurrent States: If a state i is recurrent, then the random walks
starting i almost surely return to i while the number of steps goes to infinity.
Otherwise, it is transient.

• Ergodicity: A state is ergodic if it is aperiodic and recurrent. If all states are
ergodic, then the Markov chain is called ergodic.

In ergodic Markov chains, the probability distribution of M(k) over all states con-
verges to a distribution as k goes to infinity [Chu67]. This distribution is also called
the stationary distribution and it verifies:

π>P = π> with
∑
i∈V

πi = 1.
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In other words, the stationary distribution of an ergodic Markov chain is the right
eigenvector of its transition matrix. This result becomes intuitive when we look at
the algebraic view of random walks. Let us consider a random walk starting from
node i and write the vector δi ∈ R|V| which is the Kronecker delta. After taking k
steps, the probability distribution of the current state of the random walk reads:

rk = δ>i Pk.

The stationary distribution, in fact, is the limit of rk as k goes to infinity. By the
Perron-Frobenius theorem, this limit converges to the right eigenvector of P.

2.1.2.1. Loop-Erased Random Walks

One can find many kinds of random walks by slightly deviating from the original
definition in Eq. (2.2). However, all of them do not necessarily come with the
Markovian property. Due to this, their distribution often is not mathematically
tractable whenever we diverge from the original random walks. Thus any theoretical
analysis usually cannot go further. Loop-erased random walks (Loop-erased Random
Walks (LERW)s) are fascinating exceptions in this manner. They were first proposed
by [Law79] in polymer physics. Since then, they have been “arguably the most
tractable model among non-Gaussian models in statistical physics [Koz07]”. More
related to this thesis, they play a significant role in the sampling of Uniform Spanning
Tree (UST) i.e. uniformly sampled spanning trees on a graph. [BP93] shows that a
path from node i to j in a UST has the same distribution as LERWs. In his seminal
paper [Wil96], Wilson leveraged this fact to propose the current most efficient exact
algorithm to generate uniform spanning trees. [Mar00] later gave the expected
complexity of this algorithm by using the law of LERWs and graph matrices such
as W or L. All of these connections lie at the very heart of this thesis. Therefore,
we conclude our tour on graph theory by introducing some of the essential results
related to LERWs.

Let us start with the formal definition of LERWs:

Definition 2.1.12 (LERW). Given a random walk W = (e1, e2, . . . , el), let us
denote the nodes visited in W by V = (v1, v2, . . . , vl+1) such that ∀ei ∈W, ei =

2.1 Graph Theory 23



(a) Before loop-erasure (b) After loop-erasure

Fig. 2.6.: Loop erasure procedure. We take a random walk starting from the node at the center
(in red), apply the loop erasure defined in Definition 2.1.12

(vi, vi+1). Then we define a new subset of indices I = {i1, i2, . . . , ik}’s of 1, . . . , l+
1 that satisfies:

i1 = 1

ij+1 = max{i : vi = vij}+ 1.
(2.4)

From the subset I, we form a loop-erased random walk LE(W ) ⊆ E as follows:

LE(W ) = {(vi1 , vi2), (vi2 , vi3), . . . , (vik−1 , vik)}.

As illustrated in 2.6, LERWs are random walks in which the cycles are deleted in the
order that they show up (chronological order). In comparison to usual random walks,
this description can seem complicated. However, its probability law surprisingly
remains tractable in terms of the graph matrices.

Theorem 2.1.5 (Law of LERWs [Mar00]). A loop-erased random walk LE(W )
on G = (V, E , w) that is stopped at the subset ∆ ⊂ V has the following probability
distribution:

P(LE(W ) = γ) =
det L−∆∪s(γ)

det L−∆

∏
(i,j)∈γ

w(i, j)

where γ is a fixed path and s(γ) denotes the nodes visited in γ.

Proof. See Lemma 1 in [Mar00].

This beautiful result ties not only diverse concepts such as probability theory and
graph-related algebra but also becomes handy in the development and analysis
of some of well-known graph algorithms in computer science. [Mar00] uses this
result as a building block for the analysis of Wilson’s algorithm as Wilson’s algorithm
repeatedly uses LERWs interrupted at some boundary. We will in Section 2.4.1
further detail this analysis along with the formal description of Wilson’s algorithm.
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2.2 Determinantal Point Processes

DPPs appear in most diverse phenomena. One of the earliest occurrences is in
quantum physics; The particles called fermions obey Pauli’s exclusion principle,
which states that two fermions can not occupy the same quantum state. In [Mac75],
Macchi describes this behaviour of fermions by a DPP. Another early example
is found in random matrix theory i.e. a field of mathematics that examines the
properties of matrices whose entries are random variables [ER05]. DPPs arise in
the spectral analysis of the random matrices whose each entry is an independent
random variable with complex normal distribution. The random eigenvalues of such
matrices are distributed according to a DPP [Joh05]. Another interesting example
pops up in number theory. Consider a random sequence S = {X1, . . . , XN} of N
numbers drawn between 0 and 9 uniformly. The locations whenever there is a
descent in this sequence i.e. {i ∈ S|Xi+1 ≤ Xi}, is surprisingly a DPP. [KT+12] lists
many interesting examples. A notable instance is associated with uniform spanning
trees on graphs. The edges in a UST follow a DPP law which leads to tractable
probabilities by using algebraic graph theory. We will detail this example and extend
it for weighted trees in Section 2.4. Before doing so, we cover the necessary formal
definitions and properties of DPPs.

2.2.1 Basics of DPPs

A point process X over a finite and discrete set Ω is a random subset of Ω. DPPs
are point processes with a particular analytical form for their probability distribu-
tion.

Definition 2.2.1 (DPP). A point process X over a finite and discrete set Ω
is called a determinantal point process if its inclusion probabilities i.e. the
probability of any subset in X , verify for every fixed subset S ∈ Ω:

P(S ⊆ X ) = det KS

where KS denotes the submatrix of the semi-definite positive matrix K ∈ R|Ω|×|Ω|

restricted to the rows and columns indexed by S. The matrix K is also called
marginal kernel and its spectrum verifies 0 4 K 4 I.
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This compact description of the inclusion probabilities yield many tractable proper-
ties. For example, if we take two objects i, j ∈ Ω and take a look on their inclusion
probability, we see:

P(i, j ∈ X ) = det K{i,j} =
∣∣∣∣∣Ki,i Ki,j

Kj,i Kj,j

∣∣∣∣∣
= Ki,iKj,j − Ki,jKj,i

= P(i ∈ X )P(j ∈ X )− Ki,jKj,i

(2.5)

For simplicity, we assume K is a symmetric matrix. Then, one can easily see the
negative association:

P(i, j ∈ X ) ≤ P(i ∈ X )P(j ∈ X )

P(i ∈ X |j ∈ X ) ≤ P(i ∈ X ).

Notice that having j ∈ X decreases the probability of also having i ∈ X . One can
see this as a repulsive process where j repels i.

A bit technical but useful property follows the definition:

Lemma 2.2.1 (Restriction [KT+12]). Given a DPP X on a ground set Ω with a
marginal kernel K and a fixed subset α ⊆ Ω, X ∩ α is also drawn from a DPP with
marginal kernel Kα.

In other words, a restriction of a DPP is also a DPP.

The choice of the kernel matrix K can be various. The similarity matrices, in which
each entry depicts the mutual similarity between the objects, are popular choices.
In this case, as the similarity Ki,j between two objects i and j grows, we end up
with lower joint probabilities of i and j, which endorses the repulsion of two similar
objects, in other words, diversity. However, notice that the choice of K such that all
of its principal minors are probabilities is not obvious. Therefore, L-ensembles, a
more natural subclass of DPPs, are often preferred:

Definition 2.2.2 (L-ensemble). An L-ensemble X is a point process associated
with a matrix L ∈ Rn×n which satisfies:

∀S ⊆ Ω, P(X = S) ∝ detLS ,

where L is a positive semi-definite matrix.
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An L-ensemble is a DPP 2 described by its atomic probabilities, the probability of
sampling a fixed element or subset, which are easier to grasp for those outside this
field. In addition, proportionality gives a higher degree of freedom by dropping
some of the constraints of a proper matrix to design the DPP. Moreover, one can
recover the corresponding K from a given L (See Thm. 2.2 in [KT+12]):

K = L(L+ I)−1 = I− (I + L)−1. (2.6)

An immediate result of this identity is that K and L are spanned by the same
eigenvectors. Let us denote the eigen-pairs of K by (ξi,xi)i∈Ω and the eigenvalues
of L by `1 ≤ `2 ≤ . . . `n. Notice that each xi is also the eigenvector of L with the
eigenvalue:

∀i ∈ Ω, `i = ξi
1− ξi

.

The sampling algorithm in [HKPV06; KT+12] uses this link to sample a DPP given L.
This algorithm is exact but requires the eigendecomposition of L as input. Therefore,
one needs to diagonalize a n × n matrix as a preprocessing, which yields a time
complexity O(n3). This cost is avoided for large n ( i.e. n = 105) by low-rank
approximations or other approximate sampling algorithms providing a significant
speed-up [DCV19].

The tractable properties of DPPs are not limited to the inclusion and atomic proba-
bilities. One can calculate the expected number of items in X :

Proposition 2.2.2 ([KT+12]). The expectation and variance of |X | is as follows:

E[|X |] = tr(K),Var(|X |) = tr(K− K2) (2.7)

Proof. The proof of expectation is one line:

E[|X |] = E

∑
i∈Ω

I(i ∈ X )

 =
∑
i∈Ω

P(i ∈ X ) =
∑
i∈Ω

Ki,i = tr(K). (2.8)

2The contrary is not necessarily true. See [DM21]
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One can derive the variance as follows:

Var(|X |) = E[|X |2]− E[|X |]2 = E[|X |2]−
(∑

i

Ki,i

)2

= E


∑
i∈Ω

I(i ∈ X )

2
−∑

i∈Ω
K2
i,i −

∑
i∈Ω

∑
j∈Ω\i

Ki,iKj,j

= E

∑
i∈Ω

I(i ∈ X ) +
∑
i∈Ω

∑
j∈Ω\i

I(i, j ∈ X )

−∑
i∈Ω

K2
i,i −

∑
i∈Ω

∑
j∈Ω\i

Ki,iKj,j

=
∑
i∈Ω

P(i ∈ X ) +
∑
i∈Ω

∑
j∈Ω\i

P(i, j ∈ X )−
∑
i∈Ω

K2
i,i −

∑
i∈Ω

∑
j∈Ω\i

Ki,iKj,j

=
∑
i∈Ω

Ki,i +
∑
i∈Ω

∑
j∈Ω\i

(Ki,iKj,j − K2
i,j)−

∑
i∈Ω

K2
i,i −

∑
i∈Ω

∑
j∈Ω\i

Ki,iKj,j

=

∑
i∈Ω

Ki,i

−
∑
i∈Ω

∑
j∈Ω\i

K2
i,j

−
∑
i∈Ω

K2
i,i


= tr(K− K2)

(2.9)

In terms of the eigenvalues of L, one has:

E [|X |] =
∑
i∈Ω

`i
`i + 1 with Var (|X |) =

∑
i∈Ω

`i
(`i + 1)2 .

Other tractable properties such as conditional or marginal probabilities are also
available for DPPs. We refer to [KT+12] for more details.

A fixed-sized DPP, also called k-DPP, is a determinantal point process conditioned
over its size. Unlike DPPs, their probabilities are not interpretable sole determinants
but ratios of determinants.

Definition 2.2.3 (Fixed-size DPPs). A fixed-size DPP is a special point process in
which the number of items is set to a fixed number k. The atomic probabilities
for a fixed set S with |S| = k read:

P(X = S) = detLS∑
S′⊆Ω
|S′|=k

detLS′
.
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The fixed size DPPs give a rise naturally in certain applications. For example, consider
the cellular network problem introduced in [BLMV17]. The goal is to place antennas
over a field so that every location receives the most reception that it can get. A
natural solution to this problem is to model and sample antenna locations from a
DPP. Imagine that we also have a strict constraint on the number of antennas that
we can place due to the budget or environmental issues. In this case, k-DPPs come
into play as we want to place exactly k antennas in the most diverse locations.

We conclude this summary by examining a special type of DPPs which are intersection
of DPPs and fixed-size DPPs, called projection DPPs:

Definition 2.2.4 (Projection DPP). A projection DPP is a DPP with marginal
kernel K which is a projection matrix i.e. K2 = K, hence the name.

Corollary 2.2.3. Let X be a projection DPP. By definition, its kernel is a projection
matrix, thus it only has eigenvalues that are either 1 or 0. Let k < |Ω| be the
number of the non-zero eigenvalues. By using the Eqs. (2.8) and (2.9), one obtains
that E [|X |] = k with zero variance. In other words, X is a fixed-size DPP.

It is also possible to tie the projection DPPs with L-ensembles:

Lemma 2.2.4 (Low rank L-ensemble [BAT19]). Let L be a symmetric matrix
with rankL = k. Let us diagonalize it as L = UDU> where U ∈ Rn×k contains the
non-trivial k eigenvectors and D ∈ Rk×k is the diagonal matrix with the non-zero
eigenvalues in its diagonal entries. A fixed-size DPP with the size of k and the
L-ensemble matrix L is equivalent to a projection DPP with the marginal kernel
UU>.

Proof. See result 1 in [BAT19].

The uniform spanning tree process on a graph is one instance in which projection
DPPs show up. In a nutshell, given a graph with n nodes, one considers the random
subset of edges that forms a uniform spanning tree. As aforementioned, this random
process is precisely described by a DPP. Moreover, its kernel is a projection matrix
with n − 1 non-zero eigenvalues. In addition, a graph-theoretic verification for
k = n− 1 is that the number of edges needed to generate a tree that reaches all n
vertices of a graph without creating a cycle is exactly n− 1. These connections are
some of the support pillars of this thesis. In Section 2.4, we detail these connections
with formal descriptions.
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2.3 Randomized Linear Algebra

In the last two decades, the volume of numerical data has exploded, and the need
for efficient matrix algorithms has become more and more prominent. However, the
classical and frequently used tools of linear algebra might not provide the required
efficiency for the big data. For example, matrix inversion is essential in solving
many machine learning problems. Inverting an n× n square matrix requires O(n3)
operations via the Gauss-Jordan elimination method. For sparse matrices, this cost is
often avoided via Cholesky decomposition, which remains in O(n3) in the worst case.
When it comes to dealing with billions of data points i.e. n = 109, this computation
might take days, thus be impractical. Along with the computational issues, there are
also hardware limitations. For example, as the data grows exponentially, it becomes
less and less feasible to fit the whole data to the RAMs (random access memories)
of today’s computers. Due to this, the computer needs to access the main memory
multiple times, yielding runtime inefficiencies.

Randomized linear algebra (RLA) addresses both of these concerns by introducing
randomness to linear algebra (LA). RLA proposes to imitate some of the main
operations in LA with a randomized scheme, also called sketch-and-solve in [DM16];
first, we sample a smaller portion of the data/the corresponding matrix; then, we
apply the expensive operation on this portion which can be handled cheaply. We
obtain by this way an estimate of the result.

This scheme has been applied to some of the main problems in LA, including solving
dense/sparse linear systems, least-squares (also regularized), eigen or singular value
decomposition [MT20]. They have been able to outperform direct computations in
solving some of these problems e.g. least-squares [DMMS11] or low-rank approx-
imation problems [DKM06]. In the scope of this thesis, we take look on a more
recent RLA algorithm [DM21] for tackling regularized least-squares problems. This
algorithm propose a DPP for creating sketches such that the corresponding estimates
of the result are an unbiased estimate i.e. the expectation of the estimates equals the
exact result. This algorithm can also be seen as a basis for the methods that will be
introduced in Chapter 3. Therefore, we will revisit the least-squares problem and
the DPP-based RLA algorithm in the following section.
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2.3.1 Linear Least-Squares Problem

In linear least-squares problems, given the observations b ∈ Rn and the predictors
A ∈ Rn×p, we seek the solution of:

x? = argmin
x∈Rp

||Ax− b||2. (2.10)

Depending on n and p, the solution takes a different form. In our case, we restrict
ourselves to the overdetermined case i.e. n > p where we usually have the solution
which has a closed-form solution as follows:

x? = (A>A)−1A>b = A†b,

where A† denotes the Moore-Penrose inverse of A and we assume that A is a tall and
full-rank matrix, thus (A>A) is invertible.

A well-known application of this formulation is linear regression [HTFF09]. In this
case, each row of A contains a data point a>i where ai ∈ Rp and b consists of an
observation per data point. The main goal is to learn the linear relation between the
data points ai’s and the observations bi’s. To do so, we fit a hyperplane (a line in case
of p = 1) that is parameterized by x and minimizes ||Ax−b||2. Real life examples are
limitless and each is not necessarily interesting. For solely entertainment purposes,
in Example 2.3.1, we take a liberty of generating a fictional example.

Mission: Killing the Sun

Fig. 2.7.: A man shooting at the sun

According to the local news in
2016 [Hur], two men who were over-
whelmed by the extremely high tem-
peratures during summer in Adana/-
Turkey started to take shots at the
sun for the purpose of killing it.
While the local police arrested them
for the public shooting, the vital sta-
tus of the sun is reported to be okay.
The mayor invited the public on their
social media accounts to keep their
calm in the face of these sweltering
temperatures and advised that shoot-
ing at the sun would not be a feasible solution.
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Fig. 2.8.: Line fitting between the bullets
fired at the sun and temperature
in Adana/Turkey

We imagine an amusing line-fitting
problem between the temperatures
(data points) in Adana during the
summer, and the number of the bul-
lets fired at the sun (observation).
Our purpose here is to find the line
that best explains the relation be-
tween the temperature and the num-
ber of bullets. Solving this problem
under the least-squares formulation,
one fits a line as shown in Fig 2.8.

In many real life applications, the solution of least-squares suffers from ill-posed
problems i.e. A is not full rank, and poor generalization i.e. overfitting. In the former
case (A>A) becomes singular thus cannot be inverted. The latter is a long standing
issue in many machine learning models. In case of Least Squares (LS), the minimizer
x? might take a form which is extremely successful for minimizing ||Ax − b|| but
completely useless to predict the observation for unseen data. This is because x? can
take extreme values to minimize ||Ax−b|| which is not necessarily robust depending
on A and b. The regularization addresses both issues. The main idea is to add an
additional term to the optimization formula to control x? such that it is well-defined
and bounded.

In case of L2 regularization with a regularization matrix R ∈ Rp×p, the problem
becomes:

x? = argmin
x∈Rp

||Ax− b||2 + x>Rx (2.11)

and the solution still preserves a closed form as:

x? = (A>A + R)−1A>b, (2.12)

As interpretable and straightforward as it is, this solution comes with computational
issues as p grows. Inverting a p×p matrix takes O(p3) operations via direct computa-
tions of the Gauss-Jordan elimination method. Some of the intermediate calculations
(e.g. pivoting) in Gauss-Jordan can be avoided via Cholesky decomposition [Saa03],
yet the number of elementary operations remains in the cubic order of p. As the
exact methods become inefficient whenever p is very large, state-of-the-art methods
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are the approximate ones in which we estimate the result much more cheaply with
a small approximation error ε > 0. Depending on the algorithmic properties and the
application, there are several schools; such as centralized/distributed [MLWFM16]
or deterministic/randomized methods [MT20] etc. We revisit in the following section
some of these methods.

2.3.2 Approximate Methods for Solving LS Problem

Aligned with the main themes of this thesis, we will examine approximate methods
in two groups; deterministic and randomized (or stochastic). Within this taxonomy,
we classify the algorithms according to whether they contain a randomized element
or not. In our tour over the most used algorithms, we reproduce some of them and
compare their strength and weaknesses.

2.3.3 Deterministic Methods

Iterative solvers are the most used algorithms that fall under the deterministic
methods for solving linear systems. In a nutshell, they use an iteration scheme that
approximates the exact solution. They usually start with an arbitrary initial solution3,
and per iteration, the solution is updated such that it gets closer and closer to the
exact solution. The iterative algorithms are fast to solve linear systems in form of
Ax = b by using only matrix multiplications with A. In this way, they benefit from
the sparsity if A is a sparse matrix i.e. number of non-zero entries is in the same
order of magnitude as p. In addition, their approximation error ε = ||x? − x̂|| is
tractable in terms of eigen/singular values of A. Thanks to this fact, one can easily
derive theoretical guarantees for convergence. In the following, we will shortly
introduce the main ideas of these methods and reproduce some of the well-known
algorithms and results.

Let us define the square matrix B := A>A + R and y := A>b ∈ Rp and rewrite the
solution in 2.12 as:

x? = B−1y.

Iterative solvers vary in computing x? depending on how they formulate the update
f : Rp → Rp within the following iteration scheme:

xk+1 := f(xk), k = 1, 2, . . . (2.13)

3Except for the initialization, they do not necessarily include any sort of randomization.
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In our case, it is possible to draw an iteration for a given splitting B = M− N:

xk+1 = M−1Nxk + M−1y,

xk+1 = xk + M−1(y− Bxk).
(2.14)

The basic iterative methods, e.g. Jacobi, Gauss-Seidel, successive over-relaxation
(SOR) or Richardson, split B such that M can be inverted much easier than B. For
example, the Jacobi iteration takes the following form:

xk+1 := D−1(L + U)xk + D−1y,

where we split B = D− L− U, D is a diagonal matrix which contains the diagonal
entries of B and L and U contains respectively the lower and upper triangular parts
of B. As D is easy to invert, one only needs to access the matrix B via matrix-vector
products per iteration. Other basic iterative methods slightly differs in how they
decompose the matrix B. As a result, they vary in the computational load per
iteration and convergences properties. However, one can still derive general results
on the convergence:

Theorem 2.3.1 (Theorem 4.1 in [Saa03]). Define the iteration matrix G = M−1N
for any splitting in form of B = M− N. Assume G is non-singular, thus there exists
a unique solution x?. Then the iteration in Eq. (2.14) converges to the solution
x? if and only if the spectral radius of G i.e. maxi |λi(G)| where λi(G) is the i-th
eigenvalues of G, denoted by ρ(G) is strictly less than 1.

Proof. We refer the reader to [Saa03] for the detailed proof.

This result indicates that not all splittings yield convergent iterations to the solu-
tion. In particular, one needs to know the spectral radius of the corresponding
iteration matrix to guarantee the convergence. As ρ(G) is not easily accessible in
practice, [Saa03] suggests using ||G||2 > ρ(G) as an upper bound.

In fact, this result extends on the convergence rate i.e. a quantity to measure how
fast the iterations converges to the solution. Formally, we define the convergence
rate as follows:

µ := lim
k→∞

max
x1∈Rp

( ||xk − x?||
||x1 − x?||

) 1
k

.

For all the basic iterative methods above, this limit equals to ρ(G) [Saa03].

The basic iterative solvers are simple to implement and analyze. However, they
are not applicable whenever the matrix B does not satisfy the constraints that are
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necessary for convergence e.g. diagonal dominance for Jacobi iterations. More robust
methods with faster convergence guarantees are the Krylov subspace methods. These
methods have a vast literature and practice [Saa03]. In the following, we summarize
the main theory and reproduce one of the most used algorithms, called the conjugate
gradient method.

Definition 2.3.1 (Krylov Subspace). A Krylov subspace Kk(B, r) based on the
matrix B and the vector r is a subspace of Rn with a size m ≤ n that is defined
as:

Kk(B, r) = span(r,Br,B2r, . . . ,Bk−1r)

Lemma 2.3.2 ([Saa03]). The solution x? = B−1b belongs to Kn(B,y).

Proof. The minimal polynomial of B, denoted by q(B), is the unique polynomial
with the minimal degree such that q(B) = 0. Given the eigenvalues of B
λ1 ≤ λ2 ≤ . . . ≤ λn, one can rewrite this polynomial as:

q(t) =
n∏
i=1

(t− λn).

Rewriting q(t), one has:

q(t) = α0 + α1t+ α2t
2 + . . . αnt

n

with the constant term α0 =
∏n
i=1 λi = det B. When B is non-singular, α0 is

ensured to be non-zero. Thus, one rewrite q(A) = 0 as:

−α0I = α1B + α2B2 + . . .Bn

−α0I = B(α1I + α2B + . . .Bn−1)

B−1 = − 1
α0

(α1I + α2B + . . .Bn−1)

Then, multiplying both sides with the vector b finishes the proof:

B−1b = − 1
α0

(α1I + α2B + . . .Bn−1)y = x? ∈ Kn(B,y)

There are several algorithms proposed that are based on Krylov subspaces. The main
idea is to approximate x? iteratively by following a set of candidate solutions xi’s that
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are also belong to Kk(B,b). The best-known ones are Arnoldi’s method, generalized
minimized residual method and conjugate gradient method Let us complete this
section by reproducing conjugate gradient algorithm. A generic gradient descent
algorithm minimizes the following loss function

F (x) := 1
2x>Bx− x>y.

Notice that x? minimizes F (x). Given an arbitrary initial solution x0, an intuitive
way to approach x? is to take a step from x0 in the opposite direction of the gradient
of F (x). An iteration that implements this idea is as follows:

xk+1 = xk − α∇F (xk) (2.15)

where the gradient ∇F (x) reads Bx− y and α ∈ R adjusts the size of the step. On
top of this, the conjugate gradient method suggests taking orthogonal directions with
optimal step sizes such that there will be no need to take another step in the direction
of previous steps. As a result, the updates form a Krylov subspace based on Kk(B,b).
We summarize the algorithm in Alg. 1. The convergence rate of this algorithm is

Algorithm 1 Conjugate Gradient Algorithm

1: Inputs:
B ∈ Rn×n,b ∈ Rn # Input matrix and vector
x1 ∈ Rn # Initial point
K ∈ N+, # Maximum number of iterations
ε ∈ R+ # Tolerance

2: Initialize:
r0 ← b− Bx1 # Initialize the residual
p0 ← r0

3: for k ← 1 to K do
4: αk ←

r>k rk
r>
k

Brk
# Calculate the step size

5: xk+1 ← xk + αkpk # Update the iterate
6: rk+1 ← rk − αkBpk # Update the residual
7: if ||rk+1||2 ≤ ε then # If the residual is less than the tolerance, stop the loop
8: Break
9: end if

10: βk ←
r>k+1rk+1

r>
k

rk
11: pk+1 ← rk+1 + βkpk
12: end for
13: return xk+1

given as 1− 2√
κ

i.e. at every iteration k, one has ||xk+1−x?||2 ≤
(
1− 2√

κ

)k
||x1−x?||2

where κ = λmax(B)
λmin(B is the condition number.
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Iterative algorithms cover a significant part of approximate methods for solving
least-squares problems. They provide fast convergence with a small approximation
error, while the main computational cost is due to the matrix-vector products with
B. Thus they scale linearly with the number of non-zero entries in B. Moreover, it is
possible to improve their performance via preconditioning [Saa03]. On the other
hand, we note that, for using CG, B is restricted to the real, symmetric and positive
semi-definite matrices. In addition, there are some cases where the product with B
is also not available. For example, when B is too big, its vector products might be
costly to evaluate.

Another branch of approximate methods, so-called randomized methods, is better
adapted for dealing with these issues by leveraging probability theory and Monte
Carlo simulations. In the following section, we revisit some of the relevant ones with
this thesis.

2.3.4 Randomized Algorithms

The earliest randomized algorithms to solve linear systems in the form of Bx = y
are attributed to Ulam and von Neumann and later developed by [FL50]. These
algorithms are based on random walks on a Markov chain whose initial distribution
and transition matrix are closely related to B and y, respectively. However, these
algorithms require strict constraints on the spectrum of B to guarantee convergence
to the desired solution. In addition, how to design the Markov chain to minimize
the approximation error is still an open question. We refer to [Ökt05] for more
details.

A set of algorithms given by the RLA literature addresses a broader class of matrices
in the setup of the least square problem. Generically, these algorithms use the
sketch-and-solve scheme to give an estimate x̃ that is an (ε, δ)-approximation, i.e.:

||Ax̃− b||2 ≤ (1 + ε)||Ax? − b||2 with probability 1− δ, (2.16)

A generic description of such algorithms given by [DM16] is as follows:

Consider the ordinary least square problem in Eq 2.10 (without regularization)
where the solution is the pseudo-inverse A†b. Let us define a random variable
J ∈ {1, 2, . . . , n} over the row indices of A with a probability mass function p :
{1, 2, . . . , n} → (0, 1) that verifies

∑n
i=1 p(i) = 1. Then, a meta-algorithm to estimate

x? takes the following form:

• Get k samples j1, j2, . . . , jk of J according to p with replacement,
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• Form the matrix Ã such that ∀i ∈ {1, . . . , k}, Ãi|: =
√

1
kp(ji)Aji|: and the vector

b̃ such that ∀i ∈ {1, . . . , k}, b̃i =
√

1
kp(ji)bji

• Solve the following least-squares problem to get approximation of x?:

x̃ = argmin
x∈Rp

||Ãx− b̃||2 = Ã†b̃. (2.17)

As typically k � n, computing x̃ can be handled much more cheaply than the
original problem. On the other hand, the performance of this algorithm strongly
depends on the probability mass function. [DM21] analyzes this scheme with some
of the conventional probability mass functions e.g. uniform or weighted by row
norms. This analysis concludes that the algorithm described above produces (ε, 0.1)-
approximations for some k � n. This is to say that one can avoid the expensive
inverse operation by sampling rows of A and b and operating on these rows which,
in turn, yields a fairly small approximation error.

Closer to the main themes of this thesis, more recent RLA algorithms deploy determi-
nantal point processes [DM21]. These methods give rise to the elegant connections
between the determinantal point processes and linear algebra. As a result, they
benefit from certain theoretical guarantees such as unbiasedness.

[DM21] proposes two new DPP-based estimators for solving the ordinary and
regularized least-squares problem. The main idea in these estimators is to sample
rows by a fixed size DPP such that the solution to the Eq. (2.17) yields an unbiased
estimation of x?. In case of the ordinary LS, the suggested DPP is a fixed size
L-ensemble with size of p and L = AA>. Theorem 2 in [DM21] states that the
corresponding DPP X verifies:

E[A−1
X bX ] = argmin

x∈Rp
||Ax− b||2 = A†b,

where AX is the submatrix of A restricted to the rows by X . The second estimator
uses the same idea to solve the regularized least-squares. In this case, X takes form
of a DPP (not fixed size) with L = 1

λAA> to sample row indices. Then, it verifies:

E[A†XbX ] = argmin
x∈Rp

||Ax− b||2 + λ||x||2 = (A>A + λI)−1Ab.

In the actual problem, λ is the hyper-parameter to adjust the balance between the
confidence on the predictors/observations and the regularization. As λ increases,
the solution will be more regularized and vice versa. Similarly, as λ increases, the
expected size of X becomes smaller. This means that the estimate A†XbX relies less
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on the predictor A and the observations b. For further analysis, such as the exact
error or algorithmic complexity, we refer the reader to [DM21].

These estimators give a simple and elegant solution to least-squares problems when
the direct or other approximate approaches are expensive. Within the contribu-
tions of this thesis, we will present in Chapter 3 a cheap method of reducing the
expected error (or variance) of these unbiased estimators. Surprisingly, this error
reduction method connects diverse concepts such as gradient descent optimization
and variance reduction Monte Carlo simulations. In addition, we will also present
some estimators for graph-regularized least-squares problems. Surprisingly, these
estimators can be reconsidered as the DPP-based estimators explained above.

2.4 Random Spanning Forests

Similar to spanning trees, combinatorialists have been studying spanning forests to
extract information about the graph. The earliest results on the enumeration, and
also randomization, over spanning trees/forests dates back to Kirchhoff’s matrix tree
theorem [Kir47]. Later on, these results emerged in physics with exciting links to
certain random models in statistical mechanics. A significant instance (for this thesis)
is that uniform spanning trees/forests are particular cases of a celebrated model in
statistical physics, called random-cluster model [Gri04] which unifies the percolation
theory and Ising-Potts’ model i.e. a statistical model for ferromagnetic materials. In
parallel, probabilists have extended the fruitful links between USTs (also Uniform
Spanning Forest (USF)) and algebraic graph theory highlighting the connections
with random walks, harmonic functions and electrical networks [BLPS01]. Then
computer scientists have come into play and developed efficient algorithms for
sampling USTs [Wil96]. As Wilson’s algorithm [BLPS01; Ald90] remains the most
efficient exact algorithm (it exactly generates a spanning tree from the uniform
distribution) in the past three decades, more recent algorithms trade the exactness
with the time complexity and propose approximate sampling algorithms [KM09].

With all these rich theoretical properties, USFs (along with USTs) have become
apt tools to analyze complex graphs. In this thesis as well, we aim to leverage
these properties for randomized linear algebra. Therefore, we dedicate the rest of
this section to introduce random spanning forests (a more generic form of uniform
spanning forests) and bring their deep connections with the graph Laplacian into
the light.
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Given a graph G = (V, E , w), consider all rooted spanning forests F over G. The
cardinal of this set |F| may vary a lot. The exact expression reads |F| = det(L + I)
by extending the matrix-tree theorem [CA02]. As a result, the number of spanning
forests on a graph with n can grow up to nn+2 (in the case of a complete graph)
depending on the structure. As this number is usually very large for general graphs,
analyzing a graph by enumerating all spanning forests remains a complicated task.
A down-to-earth alternative is by randomization, defining the distribution of forests
by associating probabilities on every spanning forest in F . Such distributions over
forests have been thoroughly studied by [BLPS01] with the limits in case of infinite
graphs i.e. n → ∞. In this thesis, we only study finite graphs and focus on the
following random objects studied in [ACGM18]:

Definition 2.4.1 (RSF). A random (rooted) spanning forest is a random directed
subgraph whose outcome space is F with the following parametric distribution:

P (ΦQ = φ) = 1
ZQ

∏
i∈ρ(φ)

qi
∏

(i,j)∈φ
w(i, j) (2.18)

where Q = {q1, . . . , qn} is a set of real parameters that verify mini qi > 0 and ZQ
is the normalization constant over all forests. In case of q1 = q2 = . . . = qn = q,
our notation for the corresponding RSF is Φq.

A particular case occurs when some qi’s are set to 0 for a subset of the nodes V ⊂ V
by leaving at least one node with a non-zero parameter. The roots of the forests
generated by this configuration are always contained in the set V \ V . Another
interesting case is as qi →∞ for i ∈ V ⊆ V . In this case, V is ensured to be a subset
of ρ(ΦQ) while the distribution takes the following form:

P (ΦQ = φ) ∝
∏

i∈ρ(φ)\V
qiw(φ),

where w(φ) =
∏

(i,j)∈φ. The RSF ΦQ is a fascinating object with many interesting
properties. As it is of central importance in this thesis, let us reproduce some of the
significant results related to ΦQ.

2.4.1 Wilson’s algorithm

One of the biggest advantages of ΦQ is the existence of a simple and efficient
algorithm to sample it. This algorithm is due to an adaptation of Wilson’s algo-
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rithm [ACGM18]. Given a root node r, Wilson’s algorithm originally generates
samples of the random spanning tree T with the following distribution:

P(T = τ) ∝
∏

(i,j)∈τ
w(i, j), τ ∈ Tr. (2.19)

where Tr is the set of all spanning trees rooted in r. This algorithm uses LERWs to
generate the paths of a spanning tree as follows:

1. Initialize the boundary ∆ = {r} and the tree T = ∅,

2. Run a random walk starting from an arbitrary node in V \∆,

3. Interrupt the random walk whenever it hits ∆,

4. Erase the cycles in the order that they appeared to obtain a path γ,

5. Update T and ∆ by T ← T ∪ γ and ∆ ← ∆ ∪ s(γ) where s(γ) denotes the
nodes included in the walk γ,

6. If ∆ \ V = ∅, terminate the algorithm and return the tree T . Otherwise go to
step 2.

This algorithm keeps updating T with the loop erased walks in G until all vertices are
covered. Therefore, when it terminates, the result in T is a spanning tree. Wilson’s
algorithm given in Alg. 2 in fact is an efficient implementation of this description.
Here we note that RandomSuccessor returns a random neighbor v of the given node
u with the probability w(u,v)

du
.

Having these detailed descriptions at hand, in the rest, we will answer three impor-
tant questions about Wilson’s algorithm:

1. How does one arrive at the distribution in Eq. (2.19) from this algorithm?

2. What is the time complexity of the algorithm?

3. How can we adapt this algorithm to sample ΦQ?

One answer, that is often cited, to the first question was given by Wilson in his
seminal paper. This proof heavily uses a representation of the random process
conducted by the algorithm, which is called the stack representation. The stack
representation proposed by [Wil96], is a sophisticated tool to analyze Wilson’s
algorithm. In this analysis, one considers a procedure over the stack representation,
called cycle popping algorithm. This algorithm also terminates with a spanning
tree and the distribution of the trees is the same as the spanning tree distribution
induced by Wilson’s algorithm. [Wil96] derives this distribution as in Eq. (2.19). A

2.4 Random Spanning Forests 41



Algorithm 2 RandomTreeWithRoot [Wil96]
1: Inputs:

G = (V, E , w)
r ∈ V

2: Initialize:
∀i ∈ V, InTree[i]← false
InTree[r]← true
∀i ∈ V, Next[i]← −1

3: for i← 1 to |V| do
4: u← i
5: while not InTree[u] do
6: Next[u]← RandomSuccessor(u,G)
7: u← Next[u]
8: end while
9: u← i

10: while not InTree[u] do
11: InTree[u]← true
12: u← Next[u]
13: end while
14: end for
15: return Next

more down-to-earth approach [Mar00] uses the probability law of LERW given in
Theorem 2.1.5. In this case, one considers Wilson’s algorithm as a series of LERWs
interrupted at evolving boundaries through the algorithm. Then, one derives the
law of the spanning trees by using the law of LERWS given in 2.1.5. In the following,
we first go through this analysis to give a detailed answer to question 1 as it is more
compatible with the main themes of this thesis. Later, we take a slight detour to
formally introduce the stack representation and cycle popping algorithm (along
with the links to Wilson’s algorithm) because we will need them in the following
chapters.

2.4.1.1. LERWs in Wilson’s Algorithm

Given the root r, k = 0, T0 = ∅ and s(T0) = {r}, Wilson’s algorithm can be
considered in two steps:

1. Run a LERW that starts from an arbitrary V \ s(Tk) and is interrupted at s(Tk).

2. Let γ be the path generated by the LERW until interruption. Then, update

• Tk+1 ← Tk ∪ γ,

• s(Tk+1)← s(Tk) ∪ s(γ),
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• k ← k + 1,

and go to step 1.

In Wilson’s algorithm, these two steps are repeated until s(Tk) = V or equivalently
Tk is a spanning tree. In other words, each branch in Tk is a LERW interrupted at
certain boundaries. In the following, we use this fact to derive the distribution for
Tk.

Theorem 2.4.1 (Correctness of Wilson’s algorithm [Mar00]). Wilson’s algorithm
generates random spanning trees distributed according to the law of Eq. (2.19).

Proof. At an arbitrary step k of Wilson’s algorithm, we sample a branch of a
spanning tree by using a LERW interrupted at s(Tk−1). The distribution of such
random walks read:

P(Tk = γ ∪ Tk−1|Tk−1) =
det L−s(Tk−1)∪s(γ)

det L−s(Tk−1)

∏
(i,j)∈γ

w(i, j).

Assume that the algorithm terminates at step K. Then, the probability law of
the resulting tree is:

P(TK = τ) =
K∏
k=1

P(Tk = γ ∪ Tk−1|Tk−1).

After telescopic cancellations, one recovers the distribution:

P(TK = τ) =
K∏
k=1

det L−s(Tk−1)∪s(γk)

det L−s(Tk−1)

∏
(i,j)∈γk

w(i, j) = 1
det L−r

∏
(i,j)∈τ

w(i, j).

Noticing that det L−r is the normalization constant (same for all r ∈ V) for the
random spanning trees finishes the proof.

Here the tractable law of LERWs allows us to show the correctness of Wilson’s
algorithm i.e. it samples from the correct distribution. Moreover, this analysis is easy
to adapt for different types of probabilistic event, such as the probability of having a
tree (not spanning) in a random spanning tree. We refer the reader to [Mar00] for
more details.
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2.4.1.2. Stack Representation and Cycle Popping Algorithm

Define a random infinite stack (a collection of items that are inserted and deleted in
last-in-first-out order) S(i) = [S(i)

1 , S
(i)
2 . . .] per node i which verifies P(S(i)

l = k) =
w(i,k)
di

or alternatively S(i)
j = RandomSuccessor(G, i) at every level j. Now we build

a directed graph GS by looking at the top level i.e. l = 1 of all stacks. Formally,
GS = (V, ES , w) such that ES = {(i, j) : S(i)

1 = j}. An immediate result is that GS has
n− 1 edges that form cycles and paths and if there is no cycle, then GS is a spanning
tree. Given these facts, we define a cycle-popping algorithm that pops the stacks
associated with the cycles until there is none left, and we are left with a random
spanning tree. Wilson’s algorithm in fact is an implementation of the described
cycle-popping algorithm. The only difference in Wilson’s algorithm is the fact that
we erase the cycles in the order they appear whereas in the cycle popping algorithm
described, the order can be arbitrary. The following lemma shows that the order of
the cycles popped is irrelevant to the resulting spanning tree. Therefore, the result
of these two algorithms is the same random spanning tree.

Lemma 2.4.2 (Invariance to the order of cycles [Wil96]). If the cycle-popping
algorithm terminates, then the order of cycles popped does not alter the resultant
spanning tree.

Proof. Assign a color l to each edge (i, S(i)
l ) according to their level in the stack.

Then we define a colored cycle c in GS as a cycle formed by colored edges. Note
that two colored cycle might have the same set of edges, yet they are not the
same as long as they contain a different set of colors on the edges.

Let c1, c2, . . . , ck, c be a sequence of colored cycles that are observed during the
execution of the cycle popping algorithm. We prove the theorem by showing
that the cycle c will be popped in case of popping any other feasible sequence.
To do so, we look at simpler case:

Assume that c′ is a cycle that can be popped instead of c1. The question that we
need to answer is:

If we start from c′ instead of c1, can we still pop c?

We answer this question by considering the following cases:
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• Case 1: c′ and c1,...,k shares no common vertex. In this case, the answer
is yes because after popping c′, one can still pop the sequence c1,...,k and
reach c.

• Case 2: c′ and c1,...,k has some common vertices. Let ci be the first cycle
that shares some vertices with c′ i.e. i = min{i ∈ N+ : ci ∩ c′ 6= ∅}. If c′

and ci do not have the same edges, then they share at least one vertex
v that has a different successor. However as the stack of v has not been
popped by c1, . . . , ci−1 up until ci, its successor in ci must be the same
with its successor in c′. Applying this reasoning to all vertices in c′ ∩ ci
shows that c′ and ci have the same edges. Moreover, the edges have the
same set of colors, because the cycles c1, . . . , ci−1 share no vertex with c′

and ci. Therefore, the colors on the edges of c′ and ci remains untouched.
Then under the facts c′ = ci and c1,...,i−1 ∩ c′ = ∅, we may follow the order
c′ = ci, c1, . . . , ci−1, ci+1, . . . , ck by reaching c.

With these two cases, we generalize that if a cycle c is encoded within the stacks,
the cycle popping algorithm will eventually pop it regardless of the order that
we follow to pop cycles. In case that the algorithm terminates, the resultant
structure, a spanning tree, is invariant from the order of popped cycles.

By using this lemma, Wilson shows that the resulting tree structure by the cycle pop-
ping/his algorithm is distributed according to Eq. (2.19). As we already recovered
this result in Theorem 2.4.1, we prefer not to repeat it in this manuscript.

Second Question. Now, we shift our focus to the second question; what is the time
complexity of Wilson’s algorithm? In this case, we refer by the time complexity
to the expected number of calls of RandomSuccessor which is the most repeatedly
called function in the algorithm. [Wil96] shows that this expectation is equal to
the mean commute time ν, i.e. the expected number of steps of a random walk in a
Markov chain until it returns to its initial state of the Markov chain used in Wilson’s
algorithm. The mean commute time is defined as:

ν :=
∑
i∈V

πi(ti,j + tj,i)

where π is the stationary distribution of the Markov chain and ti,j is the expected
number of steps to reach j from i. In case of Wilson’s algorithm, the Markov
chain admits the transition probabilities Pi,j = w(i,j)

di
except that it is absorbed at r.
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S =

S(1) S(2) S(3) S(4) S(5)


2 1 4 3 ∅
5 3 4 2 ∅
2 4 5 1 ∅
4 2 5 1 ∅

...

4

1 5

32

4

1 5

32

4

1 5

32

4

1 5

32

4

1 5

32

Popping cycle of
node 1, 2

Popping cycle of
node 3, 4

Fig. 2.9.: A toy example on the order invariance of the popped cycles. The infinite matrix S
contains the initial configuration of the infinite stacks in its columns. As we pop the
cycles, the corresponding stacks pop the element at their first row. We follow different
orders for popping the cycles but the popped cycles in the are the same ones yielding
the same spanning tree as a result.

Then [Mar00] calculates the expected number of calls to RandomSuccessor in terms
of P as follows:

E[# of calls to RandomSuccessor] = ν = tr(I− P−r)−1. (2.20)

where P−r is the reduced matrix by deleting the rows and columns corresponding to
r.

Third Question. Finally, adapting Wilson’s algorithm for spanning forests is straight-
forward:

Γ

1 4

32

q3

q4

q2

q1

Γ

1 4

32

1 4

32

Wilson’s
algorithm

Cut the
edges to Γ

Fig. 2.10.: We extend the original graph with an additional node Γ. Then we launch Wilson’s
algorithm to sample a spanning tree rooted in Γ on the extended graph. Cutting
the edges incident to Γ gives a spanning forest distributed by the law of ΦQ
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• Add an additional node called Γ to G,

• Add an edge from every node to Γ with an edge weight w(i,Γ) = qi,

• Run Wilson’s algorithm on the extended graph by choosing Γ as the root.

Alg. 3 gives an implementation of this adaptation (also See Fig. 2.10). This adapta-
tion samples a random spanning tree on an extended graph with an additional node
Γ. The distribution of these trees reads:

P(TΓ = τ) ∝
∏

(i,j)∈τ
w(i, j)

Notice that by cutting the edges in TΓ that are incident to Γ, one obtains a spanning
forest. Moreover, the relation between these forests and trees is a bijection i.e. for
each instance of TΓ, one reaches a unique forest by cutting the edges incident to Γ.
Then these forests admit the same distribution as TΓ. By separating the edges linked
to Γ, one recovers:

P(Φq = φ) ∝
∏

i∈ρ(φ)
qi

∏
(i,j)∈φ

w(i, j).

Finally, we obtain the time complexity of RandomForest by adapting Eq. (2.20):

E

# of calls to
RandomSuccessor in
RandomForest

 = tr
(
(Q + L)−1(Q + D)

)
≤ n+ 2m

mini qi
. (2.21)

The upper-bound we give here is to give an understanding of this unknown trace in
terms of graph parameters. However, it is usually not tight. We refer the reader to
App. A.1 for the derivation of the upper bound.

2.4.2 DPPs in Random Spanning Forests

In the scope of this thesis, the most interesting properties of RSFs are their links with
DPPs. In particular, the edges and roots of Φq are sampled from certain DPPs whose
kernel matrices are tractable in terms of the edge incidence matrix or graph Laplacian.
These results have their roots from the results in random spanning trees [BP93], later
summarized in [ACGM18]. We give in this section some important ones.
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Algorithm 3 RandomForest [ACGM18]
1: Inputs:

G = (V, E , w)
Q = {q1, . . . , qn}

2: Initialize:
# Initially, the forest is empty
∀i ∈ V, InForest[i]← false
∀i ∈ V, Next[i]← −1
∀i ∈ V, d[i]←

∑
j∈N (i)w(i, j) # Degrees

3: for i← 1 to |V| do
4: u← i
5: # Start a random walk to create a forest branch
6: while not InForest[u] do # Stop if u is in the forest
7: if rand ≤ qi

qi+d[u] then #If true, u becomes a root
8: InForest[u]← true # Add u to the forest
9: Next[u]← −1 # Set next of u to null

10: else # If false, continue the random walk
11: Next[u]← RandomSuccessor(u,G)
12: u← Next[u]
13: end if
14: end while
15: u← i # Go back to the initial node
16: # Add the newly created branch to the forest
17: while not InForest[u] do
18: InForest[u]← true
19: u← Next[u]
20: end while
21: end for
22: return Next
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Theorem 2.4.3 (The roots and edges of ΦQ are DPPs). Given a graph G =
(V, E , w), the roots ρ(ΦQ) and edges S of ΦQ is an L-ensemble with:

∀V ⊆ V, S ⊆ E , P((ρ(ΦQ),S) = (V, S)) ∝ detLV ∪S

with L =
[

Q1/2

B

] [
Q1/2 B>

]
=
[

Q Q1/2B>

BQ1/2 BB>

]
,

where Q = diag(Q).

Proof. We prove this theorem algebraically by showing that for any fixed set
V ⊂ V and S ⊂ E , the determinant detLV ∪S is proportional to the distribution
of RSFs (at the right hand side):

detLV ∪S ∝ P(ρ(ΦQ),S = V, S) = 1
ZQ



∏
r∈V

qr
∏

(i,j)∈S
w(i, j), if S forms a

spanning forest
with the root set
V ,

0, otherwise.

Recall that the adaptation of Wilson’s algorithm for forests samples a spanning
tree over an extended graph with a node Γ. Let us start by writing the edge
incidence matrix of this graph:

Bext =
[

Q1/2 −Q1/21
B 0

]
∈ R(m+n)×(n+1)

An immediate result of this definition links Bext with L:

L = (Bext:|−Γ)>Bext:|−Γ.

In addition, given a fixed set S′ of edges on the extended graph, Theorem 2.1.3
yields

|det BextS′|−Γ| =



∏
(i,j)∈S′

√
w(i, j), if S′ forms a span-

ning tree rooted in
Γ,

0, otherwise.

S′ consists of the edges incident to Γ and the edges from E . As aforementioned,
when we delete the former group, we obtain a rooted spanning forest φ =
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(V, S, w) with roots V are the neighbors of Γ in S′. Therefore, there is a bijection
between the roots V and the edges incident to Γ in S′. Relying on this fact we
rewrite:

| det BextS∪V |−Γ| =



∏
r∈V

√
qr

∏
(i,j)∈S

√
w(i, j), if S forms a span-

ning forest with the
root set V ,

0, otherwise.

Then we finish the proof by writing the determinant formula for matrix multipli-
cations:

detLV ∪S = det(BextV ∪S|−Γ)2 =



∏
r∈V

qr
∏

(i,j)∈S
w(i, j), if S′ forms a span-

ning forest with the
root set V ,

0, otherwise.

.

One recovers the probability P((ρ(ΦQ),S) = (V, S)) by normalizing the right
hand side by ZQ.

This process of roots and edges is in fact a projection DPP based on L-ensemble L
by Lemma 2.2.4. In order to see this, first notice that the roots-edges process is a
fixed size DPP as |S| + ρ(ΦQ) = n is always true. Moreover, one has rankL = n.
4 Then the marginal kernel of the projection DPP can be written as M =

n∑
k=1

xkxTk
where xk is the k-th eigenvector of L associated to a non-zero eigenvalue.

Remark 2 (Restriction to the roots). Restricting a DPP to a subset of its outcome
space also yields a DPP restricting its marginal kernel (See Lemma 2.2.1). We can
calculate the marginal kernel of ρ(ΦQ) by using this property.

Theorem 2.4.4. ρ(ΦQ) is a DPP with marginal kernel K = (L + Q)−1Q.

Proof. The proof have three main steps:

1. We first derive the marginal kernel of the root-edge process in terms of
blocks of L.

4This is, because firstly rankL = rank Bext:|−Γ and rank Bext:|−Γ ≥ n due to its n × n diagonal matrix
component Q. Also Bext:|−Γ is a n × (m + n) long matrix, one has rankL ≤ n which implies the
equality rankL = n.
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2. Then we invoke Lemma 2.2.1 to derive the kernel only for the roots ρ(ΦQ).

3. Finally, we show a DPP with the resulting kernel is equivalent to a DPP
with the kernel K = (L + Q)−1Q.

For the first step, let us diagonalize L = XDX> where X ∈ R(n+m)×n contains
the non-trivial eigenvectors and D ∈ Rn×n is a diagonal matrix whose entries
contain the non-zero eigenvalues. The marginal kernel of the root-edge process
reads:

M = XX>.

In order to write this matrix in terms of the blocks of L, we use the following
trick:

lim
α→∞

αL(αL+ I)−1 = XX>.a

In left hand side, we write the block matrix form of L within the matrix inverse:

lim
α→∞

αL
([

αQ + I αQ1/2B>

αBQ1/2 I + αBB>

])−1

= L lim
α→∞

([
Q + α−1I Q1/2B>

BQ1/2 α−1I + BB>

])−1

Before going further calculations with the block matrix inversion formula, re-
call that we want to derive the kernel only for the root set. This means by
Lemma 2.2.1 that we are interested in deriving only the first n× n block of M.
Then let us restrict our calculations on the region of interests. This means that
by the block matrix inversion, one has:

M{1,...,n} =
[
Q Q1/2B>

]
lim
α→∞

[
S

−(BB> + α−1I)−1BQ1/2S

]

where S = (Q + α−1I − Q1/2B>(BB> + α−1I)−1BQ1/2)−1 is the Schur’s com-
plement. After several algebraic manipulations (See Appendix A.3), this limit
converges to:

M{1,...,n} = lim
α→∞

(Q− Q1/2B>(BB> + α−1I)−1BQ1/2)S = Q1/2(L + Q)−1Q1/2.

(2.22)
We finish the proof by showing the equivalence of the two kernels M{1,...,n} and
K. As both (L + Q) and Q1/2 are square matrices, one has for all subsets X ⊆ V:

det(Q1/2(L + Q)−1Q1/2)X = det(Q1/2)X det(L + Q)−1)X det(Q1/2)X
= det(Q)X det(L + Q)−1)X
= det(Q(L + Q)−1)X = det KX
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aThis is easy to check diagonalizing αL(αL+ I)−1 as X(I + (αD)−1)−1X>. As α→∞, the limit
converges to XX>.

The connection of K with RSFs goes even beyond. The following theorem in-
dicates that the off-diagonal entries Ki,j corresponds to certain probabilities in
RSFs.

Theorem 2.4.5. For a given graph G = (V, E , w), in a realization of RSF ΦQ, the
probability of node i to be rooted in node j reads:

P (rΦQ(i) = j) = Ki,j (2.23)

Proof. Let Fij be all spanning forests in which node i is rooted at j. Then, one
writes the probability P (rΦQ(i) = j) by using the definition of ΦQ:

P (rΦQ(i) = j) =

∑
φ∈Fij

∏
l∈ρ(φ)

ql
∏

a,b∈φ
w(a, b)∑

φ∈F

∏
l∈ρ(φ)

ql
∏

a,b∈φ
w(a, b)

=
qj

∑
φ∈Fij

∏
l∈ρ(φ)/j

ql
∏

a,b∈φ
w(a, b)∑

φ∈F

∏
l∈ρ(φ)

ql
∏

a,b∈φ
w(a, b) = qj

Aij
Z

(2.24)

where Aij and Z are scalars. In the rest, we leverage the revisited theorems to
give close form expressions for Aij and Z.

Given the extended graph G′ = (V ′, E ′, w) and a subset S = Si ∪ SΓ with
|S| = |V| − 1, one can write the resultant absolute determinant for R = {i,Γ}
by using Theorem 2.1.3:

|det B′{S|−i,−Γ}| =

 ∏
a,b∈SΓ

w(a, b)
∏

a,b∈Si

w(a, b)

1/2

whenever S forms a spanning forest on G′ with two trees in which node i and
Γ are disconnected. Similarly, one obtains the same result by plugging node j
instead of i. Then, the following holds:

|det B′{S|−i,−Γ} det B′{S|−j,−Γ}| =

 ∏
a,b∈SΓ

w(a, b)
∏

a,b∈Si=Sj
w(a, b)
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whenever S forms a spanning forest on G′ with two trees in which Γ is not
connected to either i or j. This implies that i and j are contained the same
tree. Notice that adding the edge (j,Γ) to such subset S reconstructs a spanning
tree on Γ. Then, one can acquire a rooted spanning forest from this tree as
done in the sampling procedure. In the resultant forest, the node j is set as the
root of the tree that contains both i and j. In other words, it is an element of
the forest set Fij . Moreover, the edge weight product of this forest is equal to
qj |det B′{S|−i,−Γ} det B′{S|−j,−Γ}|. Then, the sum of the edge weight products of
all forests in Fij equals to:

∑
φ∈Fij

∏
l∈ρ(φ)

ql
∏
a,b∈φ

w(a, b) = qj
∑

S⊆E ′,|S|=|V ′|−1
| det B′S|−i,−Γ det B′S|−j,−Γ| (2.25)

By using Lemma A.4.1, we exchange the absolute value operator with the sign
of the expression. Then, by using the Cauchey-Binet, one has∑
φ∈Fij

∏
l∈ρ(φ)

ql
∏
a,b∈φ

w(a, b) = (−1)i+jqj
∑

S⊆E ′,|S|=|V ′|−1
det B′S|−i,−Γ det B′S|−j,−Γ

= (−1)i+jqj det L′−i,−Γ|−j,−Γ

(2.26)

where L′ is the graph Laplacian of G′. This completes the computation of Aij
in Eq. (2.24). In a similar fashion, one computes Z as det L′−Γ|−Γ by doing the
same calculations without i and j. Noticing L′−Γ|−Γ = (L + Q) reads the famous
Cramer’s formula for inverse matrices:

P (rΦQ(i) = j) = Aij
Z

= qj
(−1)i+j det(L + Q)−i,|−j

det(L + Q) = qj(L + Q)−1
i,j = Ki,j

2.4.2.1. Random Partitions induced by ΦQ

A partition of the vertex set is any set P := (V1, . . . ,VK) that satisfies ∀k, k′ ∈
{1, . . . ,K},Vk ∩Vk′ = ∅ and ∪Kk=1Vk = V . A straight-forward partition in a spanning
forest φ is given by its connected components, or equivalently trees. We denote this
partition by π(φ) := (V1,V2, . . . ,V|ρ(φ)|). Let us enumerate the trees of φ from 1 to
|ρ(φ)|. We define the tree number of a node as the number of the tree that it belongs
to and it is denoted by t(π(φ), i) where t : (π(F),V) → {1, . . . , |ρ(φ)|} maps every
node to its tree number.
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Deleting the edges
between the parts

Fig. 2.11.: Fixing the partition created by ΦQ ensures that the edges between parts are never
sampled. Moreover, every tree sampled in such process has to be a spanning tree
of a part. Therefore, given the partition, sampling ΦQ boils down to sampling
independent spanning trees in each part.

Another surprising theoretical result on ΦQ emerges when we look at the conditional
probabilities of roots over the random partition π(ΦQ):

Proposition 2.4.6 (Roots in a fixed partition [ACGM18]). For a fixed subset
V ⊆ V and a fixed partition P, the conditional probability of roots for a fixed
partition of random spanning forests is:

P(ρ(ΦQ) = V |π(ΦQ) = P) =
∏
u∈V

qu∑
v∈Vt(P,v)

qv
. (2.27)

Proof. Consider the subgraphs of G by deleting the edges in between the subsets
given by the fixed partition (See Fig. 2.11). Notice that sampling ΦQ on a fixed
partition P is equivalent to sampling random spanning trees independently on
each such subgraph. Therefore we need to look at the probability distribution
of the roots in these trees to derive the conditional probability. To do so, let us
denote the random spanning tree restricting ΦQ to only spanning trees by T .
The probability distribution of T reads:

P(T = τ) ∝
∏

(i,j)∈τ
w(i, j)

Then, the probability of T being rooted in rooted in node r is:

P(T ∈ Tr) =
qr

∑
τr∈Tr

∏
(i,j)∈τr

w(i, j)∑
r′∈V

qr′
∑

τr′∈Tr′

∏
(i,j)∈τr′

w(i, j) . (2.28)

Recall that given a undirected spanning tree, for each node r, there exists
exactly one orientation of edges which makes r root. Therefore, the sum
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∑
τr∈Tr

∏
(i,j)∈τr

w(i, j) is a constant for all r ∈ V. Then, after the cancellation in

both numerator and denominator, one has:

P(T ∈ Tr) = qr∑
r′∈V

qr′
.

As this is the probability of each tree sampled in ΦQ conditioned over the
partition P, recalling the independent nature of the trees finishes the proof:

P(ρ(ΦQ) = V |π(ΦQ) = P) =
∏
u∈V

qu∑
v∈Vt(P,v)

qv
.

This last result on RSFs covers all the technical results that we need for the rest. In
the next section, we take a break before proceeding to the main materials of the
thesis and summarize some of the important results.

2.5 Conclusion

Overall, we have covered many results from diverse concepts in this section. We
finalize this chapter by highlighting the ones that will be repeatedly used in the
following chapters. Therefore, we kindly suggest the reader to keep these following
couple of pages at reach as a cheat-sheet through the rest of the journey.

2.5.1 Graph Laplacian

Given a graph G = (V, E , w), the graph Laplacian L = D − W is a simple butOne matrix to
rule them all... resourceful object in graph theory, combinatorics, probability theory, computer

science, signal processing and machine learning. Closer to the main themes of
this thesis, in this section, we take a look on two significant results on certain
determinants of L:

We first look at its link with the spanning trees that can be found on G. This link is
the celebrated matrix-tree theorem which gives the number of all the spanning trees
on a unweighted graph in a simple closed-form expression:

∀i ∈ V, |T | = det L−i|−i.
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We later generalize it for weighted graphs:

∀i ∈ V, det L−i|−i =
∑
τ∈T

∏
(i,j)∈Eτ

w(i, j).

These results extend on rooted spanning forests on G. In Theorem 2.1.3, we adapt
Poincaré’s results for spanning forests that yields a useful device to count all spanning
forests on G given the root set R:

∀R ⊆ V, det L−R =
∑
φ∈FR

∏
(i,j)∈Eφ

w(i, j).

Second, we give the links of L with a special type of random walk, called loop-erased
random walks. These random walks are obtained by erasing cycles as they appear in
the usual random walks. Due to the cycle erasure, they are not Markovian random
processes i.e. the next vertex to land does not solely depend on the current vertex.
Unlike many non-Markovian process, LERWs surprising have a tractable distribution,
which can be written in terms of principle minors of L:

P(LE(W ) = γ) =
det L−∆∪s(γ)

det L−∆

∏
(i,j)∈γ

w(i, j)

where ∆ ⊂ V is the boundary where the LERW LE(W ) is stopped, γ is a fixed path
and s(γ) denotes the nodes visited in γ.

2.5.2 Determinantal Point Processes and Randomized Linear
Algebra

A determinantal point process X is a special type of point process over a set Ω that
verifies:

P(S ⊆ X ) = det KS .

for some square matrix K. This definition also yields that:

E[|X |] = E

∑
i∈Ω

I(i ∈ X )

 =
∑
i∈Ω

P(i ∈ X ) =
∑
i∈Ω

Ki,i = tr(K).
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A =
Sample rows



†

b

Fig. 2.12.: An illustration of the sample-and-solve scheme. First we sample a small portion of
the matrix A, then proceed to the expensive operation.

The key feature of DPPs is that they can encode negative association between different
elements in Ω. For a symmetric K, one can examine this phenomena by looking at
the joint probabilities in the case of two elements i, j ∈ Ω:

P(i, j ∈ X ) = P(i ∈ X )P(j ∈ X )− Ki,jKj,i ≤ P(i ∈ X )P(j ∈ X ).

As the calculation suggests, having node i in X reduce the chances of also having
node j in X .

Although DPPs by definition seem a bit abstract, real-life examples and use cases of
DPPs are numerous. In our case, we are interested in their use in randomized linear
algebra. RLA is a set of numerical linear algebra tools that replaces expensive direct
operations with randomized approximations. We consider solving least-squares
problem (also regularized) with such approximation scheme. In this case, we are
given some observations b ∈ Rn and predictors A ∈ Rn×p and we solve:

x? = argmin
x∈Rp

||Ax− b||2.

The exact solution x? reads:
x? = A†b.

In the regularized case, it is:

x? = (A>A + λR)−1A>b.

Generically these inversions requires O(np2) computations with the direct methods.
RLA proposes randomized methods to avoid this expensive computation. In a
nutshell, these methods first sample a smaller portion i.e. some rows of A and
(also b depending on the randomization) at random. Then, they do the expensive
operations on the sampled portion which avoid the expensive global operations
(Also see Fig. 2.12). Indeed, the type of the randomization i.e. the probability

2.5 Conclusion 57



distribution is of central importance in such a scheme. This is where DPPs come into
play. Sampling the rows from certain DPPs yield unbiased estimators for both least-
squares and regularized least-squares solution. Closer to this, one main contribution
of this thesis is a new estimator whose variance is significantly reduced w.r.t. the
DPP-based estimators (More details in Section 2.2). In addition, we in Chapter 3
introduce elegant estimators for graph-regularized least-squares problems i.e. the
solution is regularized to be smooth on a graph. Surprisingly these estimators are
also DPP-based estimators as the random process (random spanning forests) that
they use is a DPP.

2.5.3 Random Spanning Forests

The last but not least concept we present in this chapter is the random spanning
forests i.e. process of randomly selecting spanning forest on a given graph. In fact,
most of the theoretical results we rely on in this thesis is closely related with the
RSFs. We denote a RSF by ΦQ and write its distribution as follows:

P (ΦQ = φ) = 1
ZQ

∏
i∈ρ(φ)

qi
∏

(i,j)∈φ
w(i, j)

where Q = {q1, . . . , qn} with mini qi > 0 and ZQ is the normalization constant over
all forests. Let us highlight some of the significant properties and theorems of ΦQ:

• Wilson’s algorithm for RSFs. Wilson’s algorithm is originally developed for
generating spanning trees at uniform. With a slight modification, it can be
used for generating samples of ΦQ. We give this modified algorithm Alg. 3, we
also note the time complexity of this algorithm in terms of number of random
variables sampled:

E

# of calls to
RandomSuccessor in
RandomForest

 = tr
(
(Q + L)−1(Q + D)

)
,

where Q = diag(Q). While it is much more efficient than naive sampling i.e. enu-
merating all forests and choosing one at random, it is known as the most
efficient algorithm for generating spanning/trees.
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• The root-edge process. The roots and edges in ΦQ are sampled from an
L-ensemble with:

∀V ⊆ V, S ⊆ E , P((ρ(ΦQ),S) = (V, S)) ∝ detLV ∪S

with L =
[

Q1/2

B

] [
Q1/2 B>

]
=
[

Q Q1/2B>

BQ1/2 BB>

]

A consequence of this along with the restriction lemma (Lemma 2.2.1) is that
the root set ρ(ΦQ) is a DPP with the marginal kernel K = (Q + L)−1Q.

• P(rΦQ(i) = j) = Ki,j . This identity is another surprising result between
spanning forests/trees and Laplacian-based algebra. Its proof is an algebraic
proof mainly based on Poincaré’s theorem for counting spanning forests with
root constraints5.

• Roots in fixed partitions. The final theorem we visit gives the distribution
of the roots when we generate a sample of ΦQ conditioned over a fixed
partition i.e. ΦQ|π(ΦQ) = P. If the partition is fixed, sampling ΦQ boil downs
to sampling independent trees within each subset of the partition. Then within
each subset, the probability having a node i as the root becomes qi∑

j∈Vt(P,i)
qj

where Vt(P,i) is the subset that contains i. By independence of the trees, one
has:

P(ρ(ΦQ) = V |π(ΦQ) = P) =
∏
u∈V

qu∑
v∈Vt(P,v)

qv
.

Note that for q1 = q2 = · · · = qn = q, this boils down to a uniform distribution.

With this last point, we reach to the end of our short(!) summary on the technical
background for the next material.

5It is worth to note that to best of our knowledge, this is a new proof compared to the existing
probabilistic and combinatorial proofs [ACGM18; CK78; CA02]
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Graph Tikhonov
Regularization and
Interpolation with RSFs

3

„C’est par la logique qu’on démontre, c’est par
l’intuition qu’on invente.

— Henri Poincaré

This chapter is dedicated to presenting the contributions of the thesis for solving
the Graph Tikhonov Regularization (GTR) (a graph adaptation of regularized linear
regression) and Graph Interpolation (GI) problems. These contributions are two-
fold; i/ the RSF-based Monte Carlo estimators for solving GTR and GI and ii/ their
improved versions via variance reduction techniques. In order to do so, we first
give formal definitions of these problems and show how they relate to each other.
Then we leverage the elegant theory of RSFs to define the methods proposed that
yield unbiased estimates for these problems. In parallel, we give several ways to
improve the estimators. Under certain conditions, these techniques can substantially
decrease their variance with a cheap additional computational cost. In addition, we
find several other use cases for these estimators where one needs to avoid expensive
computations within intermediate operations, such as semi-supervised learning on
graphs, Newton’s method and Alternating Direction Method of Multipliers (ADMM).
In parallel, we also provide empirical illustrations or comparisons of the techniques
proposed with state-of-the-art methods.
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3.4.3 L-1 Regularization on Graphs . . . . . . . . . . . . . . . 90

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1 Problem Definition

As in many signal processing applications, the measurements over graph signals are
either noisy or incomplete i.e. missing over some subset of nodes. A big chunk of tools
to overcome these issues proposes to smooth out the signal over the given graph. In
the case of denoising, smoothing means that we eliminate specific components of the
measurements that are highly varying over the graph by assuming that the original
signal is smooth on the graph. Similarly, in an interpolation setup, we complete
the missing parts of the signal so that it remains smooth on the underlying graph.
A unifying approach tackles both problems with a single optimization problem.
This approach adapts the Tikhonov regularization for graph signals and draws the
following optimization problem:

Problem 3.1.1. Given a graph G = (V, E , w) and measurements y = [y1, . . . , yp]> ∈
Rp over the vertices V ⊆ V with |V | = p, we attempt to recover the original signal
by solving:

x̂ = argmin
x∈Rn

||My− x||2Q + x>Lx. (3.1)

where ||a||Q = a>Qa is the Mahalonobis distance and Q is a diagonal matrix
where each Qi,i is a node-wise regularization parameter. We define the selection
matrix M ∈ Rn×p as a rectangular diagonal matrix where Mi,i = I(i ∈ V ). This
problem admits a closed form solution in the following form:

x̂ = (Q + L)−1QMy (3.2)

This generic linear regression formulation, in fact, has been revisited in various
contexts, from solving heat equations in physics to semi-supervised learning on
graphs in machine learning. Among many, two cases exemplify the primary uses of
GTR and GI:

Graph signal filtering: Graph signal filtering means eliminating certain componentsIn this case, one
considers M =
I ∈ Rn×n and
Q = qI ∈ Rn×n

of the graph signal and retain the parts of interest. The common practice in linear
filtering schemes is through the frequency analysis of the signal i.e. eliminating
certain frequency components. A fundamental tool in this type of analysis is the
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Fourier transform that interprets the signal in terms of its frequency components.
However, the adaptation of the Fourier transform for graph signals is not evident due
to the irregularity of the signal domain. By analogy, there exist multiple definitions
of Fourier transform [RBTGV19; TGB18]. The one that we are interested in, takes
the eigenvalues Λ = {λ1, . . . , λn} and the eigenvectors U = [u1| . . . |un] of the graph
Laplacian as the graph frequencies and the graph Fourier basis, respectively. Then
the graph Fourier transform of a signal is defined as:

ŷ := U>y. (3.3)

The vector ŷ contains the Fourier coefficients of the signal corresponding to the
different frequency components. One recovers the original signal via the inverse
transform y = Uŷ. Given these definitions, we describe a filtering operation in
three steps; i/ first compute the Fourier coefficients as ŷ = U>y, ii/ then filter out
these coefficients by computing ŷ′ = diag(g(Λ))ŷ where g : Λ→ Rn is the transfer
function of the filter, iii/ finally compute the filtered signal y′ = Uŷ′ by going back
to the original domain via the inverse transform. We can summarize these three
steps in the following expression:

y′ = U> diag(g(Λ))Uy.

Depending on the characteristic of the transfer function g, this filtering scheme
eliminates some components and amplifies others. For example, for the ideal low-
pass filters or k-bandlimited filters, which keep only the first k frequency components
and eliminate the rest (of the high-frequency components), the transfer function
becomes:

gk(λ) =

1 if λ < λk,

0 otherwise.

Interestingly, the solution x̂ = Ky where K = q(L + qI)−1 can be considered under
this graph filtering scheme. This is because L and K share the same eigenvectors and
one can write:

K = U diag(g(Λ))U> with gq(λ) = q

q + λ
.

In other words, the solution x̂ is a filtered graph signal with the transfer function
gq(λ) = q

q+λ . Moreover, gq(λ) is a low-pass filter as it diminishes for larger values
of the graph frequencies. In Fig. 3.1, we illustrate this behavior on a graph built by
temperature sensors over Bretagne/France. Here, the graph signal is the average
temperature measurements collected from various locations in Bretagne. We apply
the filter gq(λ) on this signal with three different values of q. We observe that
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(a) Temperature network over
Bretagne/France.

(b) Filtered signal with q =
0.1

(c) Filtered signal with q =
2.55

(d) Filtered signal with q =
5.0
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Transfer function over different q's

(e) Transfer function of the filter

Fig. 3.1.: An Illustration of the filtering properties of gq(λ) for different q values. In this exam-
ple, we take the temperature dataset collected in [PV17]. We build a k = 5 nearest
neighbour graph from the locations of the temperature sensors over Bretagne/France.
The signal is the average temperatures measured at each sensor and depicted by the
colours (blue is colder).

for decreasing values of q, the filter eliminates more and more high frequency
components. In turn, the output becomes smoother on the underlying graph.

Dirichlet boundary problem on graphs: In solving differential equations, theIn this case, for
some subset
V ⊆ V one has
M ∈ Rn×|V |

with
Mi,i = I(i ∈ V )
and Q =
limq→∞ qMM>.

Dirichlet boundary condition specifies the values of the solution at a given boundary.
As it is a generic constraint, it can be used with any differential system. However,
we are interested in the case when it is imposed on Laplace’s equation. Laplace’s
equation is a particular partial differential equation (PDE) in which we seek a
multivariate function u(x1, . . . , xp) that satisfies:

∆u =
p∑
i=1

∂2u

∂x2
i

= 0,

s.t. ∀x1, . . . , xp ∈ δD, u(x1, . . . , xp) = g(x1, . . . , xp).
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(a) A sensor network
with missing signal (in blue)

(b) The signal after completion

Fig. 3.2.: We complete the missing signal by the solution in Eq. (3.4).

where ∆ is the continuous Laplacian operator, δD is the boundary of the closed
region D ⊂ Rp and the function g gives the fixed boundary values. The heat
diffusion, fluid flow, or electrostatics are only some of the physical phenomena in
which this PDE or its variants appear [HKLW12; Mar15].

By analogy, this problem translates to the discrete graph domain. In this case, the
subset V ⊂ V is considered as the boundary and we seek a solution over U = V \ V
of the following linear system:

∀i ∈ U,
∑

j∈N (i)
w(i, j)(xi − xj) = 0,

s.t. ∀i ∈ V, xi = g(i).
(3.4)

In turn, we have a closed-form solution for this problem:

xi =

((LU |U )−1LU |V g)i, if i ∈ U

g(i), otherwise,
(3.5)

where g = [g(i)]i∈U . We illustrate this scheme in Fig. 3.2. In this illustration, we are
given a graph with a lot of unlabeled nodes (unlabeled nodes in blue). We propagate
the information contained in the labeled nodes by using the solution in Eq. 3.5. This
solution is also called the harmonic function. A notable application of harmonic
functions is the electrical networks i.e. networks of resistors (a circuit element that
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has a proportional relation between the potential difference applied to it and the
current flowing through it). In these networks/graphs, each resistor is an edge, and
each point where two resistors meet is a node. In this abstraction, the conductances
of the resistors are denoted by the edge weights. A typical problem is the calculation
of the currents flowing through the resistors whenever there is a potential difference
between some nodes. This problem boils down to solving the problem in Eq. 3.4.
To show this, let us denote the potentials/voltages at each node i by xi and assume
that the potentials in V are given by g(i)’s for all i ∈ V . By Ohm’s law, the current
flowing in edge (i, j) equals to w(i, j)(xi − xj). Then, by Kirchoff’s current law state
that the current sum

∑
j∈N (i)w(i, j)(xi − xj) at each node i must be equal to zero.

As a result, we recover the problem in Eq. (3.4).

3.2 State-of-the-Art

In these applications and in many more that boil down to this form, the efficient cal-
culation of x̂ is of utmost necessity. The main computational cost is inverting a matrix
involving the graph Laplacian L. In the worst-case scenario, the naive computations
go through the Gauss-Jordan elimination process that takes O(n3) elementary oper-
ations. This cost is prohibitive as n increases. This shortcoming is solved by using
either direct methods after useful matrix factorizations (e.g. Cholesky decomposition)
or approximate methods (e.g. iterative solvers). The former approaches provide the
exact solution by avoiding some cumbersome intermediate operations. They usually
yield an efficient computation. However, in the worst case, the number of operations
scales up to O(n3). Therefore, state-of-the-art is the approximate methods. Among
those, the strongest ones are the iterative solvers, notably the conjugate gradient
descent algorithm with proper preconditioning. The time complexity of Conjugate
Gradient Descent (CGD) scales linearly with the number of non-zero entries in the
inverted matrix, which is the number of edges m in our case. More details on the
taxonomy of the approximate methods are in Section 2.3.3.

This chapter will present the RSF-based algorithms to approximate x̂. Appealing
properties of these estimators are that:

• They illustrate a practical use of elegant links between RSFs and the graph
Laplacian.

• They give unbiased estimates of x̂ (i.e. their expectation equals to x̂),

• The time complexity of both estimators scale linearly with m,
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• The theoretical analysis is tractable.

On the other hand, the intrinsic weakness of these methods is their convergence
rate to x̂. They are subject to the Monte Carlo convergence rate O(N−1/2) where
N is the number of Monte Carlo samples. Therefore, they require many samples
to reach high accuracy. As this issue remains the main limiting factor in all Monte
Carlo estimators, the vast literature on Monte Carlo has focused on decreasing the
expected error of the estimators. In order to do so, many algorithms have been
proposed [Owe13]. The main line of the algorithms proposed suggests using an
additional statistic to efficiently eliminate some of the variance of the estimator.
We manage to adapt two of them for the RSF-based estimators. We detail these
adaptation in Section 3.3.1 and 3.3.2.

3.3 Estimating x̂ via RSFs

Consider the case V = V. Then, one recovers:

x̂ = Ky with K = (Q + L)−1Q.

Now, recall Theorem 2.4.4 which states that the matrix K is the kernel matrix of the
DPP of the random roots of ΦQ. Moreover, it verifies the following identity:

P(rΦQ(i) = j) = Ki,j .

We present in this section two unbiased estimators of x̂ that take their roots from this
beautiful result. Moreover, they easily extend to the case where there are missing
measurements i.e. V ⊂ V.

Definition 3.3.1 (x̃). Let y ∈ Rn be the (complete) measurements over V.
Define an estimator x̃ = [x̃1, . . . , x̃n] as follows:

∀i ∈ V, x̃i := yir with ir = rΦQ(i). (3.6)

The expectation and variance analysis is tractable and uncover the link between x̃
and x̂:

Proposition 3.3.1 (Expectation and Variance of x̃). Two main properties of x̃
are that:
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Sample a forest Propagate the signal

Fig. 3.3.: An illustration of x̃. Given the graph and the signals (as colours on the nodes), we
first sample a rooted spanning forest via Wilson’s algorithm. Then we propagate the
signal at the roots through the corresponding trees.

i The estimator x̃ is unbiased for x̂,

ii The weighted sum of the node-wise variance of x̃ reads:

E[||x̃− x̂||2Q] =
∑
i∈V

qi Var(x̃i) = y>(Q− K>QK)y.

Proof. The proof of (i) is easy. Define a random matrix S̃ := [I(rΦQ(i) = j)]i,j .
An immediate result of this definition is:

E[S̃] = K.

Noticing x̃ = S̃y finishes the first part of the proof:

E[x̃] = E[S̃]y = Ky = x̂.

To prove (ii), we replace the variance with its definition:∑
i∈V

qi Var(x̃i) =
∑
i∈V

qi
(
E[x̃2

i ]− E[x̃i]2
)

=
∑
i∈V

qi

∑
j∈V

P(rΦQ(i) = j)y2
j − x̂2

i

 .
=
∑
i∈V

qi

∑
j∈V

Ki,jy
2
j − x̂2

i

 .
Then define y(2) = [y2

1, . . . , y
2
n] and q = [q1, . . . , qn]. Rewriting the summation

above, one has:

∑
i∈V

qi Var(x̃i) =
(∑
i∈V

qi(Ky(2))i

)
−
(∑
i∈V

qi(Ky)2
i

)

= q>Ky(2) − yK>QKy.
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Noticing that q is the eigenvector of (Q + L)−1 with the eigenvalue 1 finishes
the proof: ∑

i∈V
qi Var(x̃i) = y>(Q− K>QK)y.

Implementing x̃ is straightforward; first sample a spanning forest via Wilson’s
algorithm, then within each tree of the forest, propagate the signal value of the
root throughout the tree (See Fig. 3.3). In order to generate N samples of x̃, we
need to sample N spanning forests via Wilson’s algorithm. As this is the heaviest
computation, one can calculate the time complexity of the proposed method in terms
of the total number of steps taken by the random walks in Wilson’s algorithm to
sample N forests. Let us denote this number KN . By using Eq. (2.21), one has:

E[KN ] = NE[K1] = N tr(Q + L)−1(D + Q).

Notice that if y = c1, the variance of x̃ is zero. Since K is a smoothing operator
on the graph, an intuitive thinking is that there is nothing to smooth out in y. If
there is some variation in y, the variance of x̃ becomes non-zero. In fact it is
maximized when y equals to the right eigenvector of K that corresponds to the
smallest eigenvalue. In this case, the quadratic form y>K>QKy is minimized and the
variance is maximized. An intuition for a such vector can be taken from the particular
case Q = qI. As previously discussed, this is the case of graph signal filtering by using
the Laplacian eigenvectors as the Fourier basis. Then the eigenvector discussed is un
the eigenvector of L with the largest eigenvalue λn or the highest graph frequency.
In other words, the vector which has the highest variation on the graph results in
the highest variance in x̃ (Also see Fig. 3.4).

It is possible to adapt x̃ when we only have measurements over a subset V ⊂ V. In
this case, M ∈ Rn×p takes a form of a rectangular selection matrix. Let yV = My =
[y>,0>] ∈ Rn Then it is possible to write x̂ in the following form:

x̂ = (Q + L)−1QyV .

Then, we can design x̃ to estimate this inversion. In this configuration, we sample
ΦQ by setting:

qi =

Qi,i, if i ∈ V,

0, otherwise.
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Fig. 3.4.: In this example, we consider the case of graph signal filtering with q = 1. The
variance of x̃ then becomes y>(I−K2)y. We plot the spectrum of the matrix (I−K2)
w.r.t. the graph Laplacian eigenvalues/graph frequencies. As a filter, (I− K2) acts
like a high-pass filter. Thus the quadratic formula y>(I − K2)y will take higher
values when y is a highly varying signal on the graph.

and we calculate x̃ over these forests. Notice that the roots of the forests generated
by this configuration are always a subset of V . Therefore, the propagated values
in x̃ are always the known signal measurements. Indeed, x̃ efficiently estimates x̂.
However, there is still a big room for improvement without compromising the run-
time efficiency. In our case, we find techniques that yield significant improvements
in the literature on variance reduction techniques [Owe13]. Besides their cheap cost,
these techniques give us a way to leverage our additional knowledge embedded in
the nature of the RSFs ( e.g. certain statistics) to substantially decrease the expected
error/variance of x̃. In the following, we delve into the application of these VR
techniques, yielding two new estimators for x̂.

3.3.1 Variance Reduction via Conditional Monte Carlo

Let X be a random variable with an unknown expectation E[X] = µX . The classical
Monte Carlo algorithm would take N samples of X and compute the empirical
mean:

X̄ = 1
N

N∑
i=1

Xi.

Now assume that there exists another random variable Y for which the conditional
expectation E[X|Y ] is easy to calculate. The conditional Monte Carlo technique also
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Sample
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Average &
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Fig. 3.5.: An illustration of x̄. We follow the same first step with x̃. Then we propagate the
(weighted) average signal within each tree. We assume q1 = · · · = qn = q.

called Rao-Blackwellization [Bla47; Rao45], allows us to use our knowledge on Y
to reduce the error of the naive estimation on µX . In doing so, it defines a new
estimator as follows:

Z̄ := 1
N

N∑
i=1

E[Xi|Y ].

As E[E[X|Y ]] = E[X], Z̄ is an unbiased estimator. Moreover, it has a reduced
variance due to the law of total variance:

Var(X) = E[Var(X|Y )] + Var(E[X|Y ]). (3.7)

In our case, we find a simple way of deploying this idea for x̃:

Definition 3.3.2 (x̄). Given a fixed partition P, we define the conditional
expectation x̄ = [x̄1, . . . , x̄n]> ∈ Rn as follows:

∀i ∈ V, x̄i := E[x̃i|π(ΦQ) = P]

=
n∑
j=1

yjP(rΦQ(i) = j|π(Φ) = P)

=
n∑
j=1

yjqj∑
k∈Vt(P,i)

qk
=

∑
j∈Vt(P,i)

qjyj∑
k∈Vt(P,i)

qk
.

(3.8)

In a practical sense, after sampling ΦQ, the new estimator x̄ is simply the empirical
weighted mean within each tree, thus it is easy to implement. Note that for q1 =
· · · = qn = q, it boils down to the simple averaging. This is illustrated in Fig. 3.5.
After sampling a spanning forest, one only needs to compute local averages and
propagate them within trees for calculating x̄. On the theory side, one can easily
ensure that x̄ is unbiased and has a lower variance than x̃ by Eq. 3.7. Moreover, we
have a closed form expression for the variance of the new estimator:

70 Chapter 3 Graph Tikhonov Regularization and Interpolation with RSFs



Proposition 3.3.2 (Variance of x̄). The weighted sum of the node-wise variance
of x̄ equals to:

E[||x̄− x̂||2Q] = y>(QK− K>QK)y.

Proof. We start by replacing the variance by its definition:

E[||x̄− x̂||2Q] =
∑
i∈V

qi Var(x̄i) =
∑
i∈V

qi
(
E[x̄2

i ]− E[x̄i]2
)
,

=
∑
i∈V

qiE[x̄2
i ]− ||x̂||2Q

=
∑
i∈V

qiE[x̄2
i ]− y>K>QKy.

(3.9)

As in Prop. 3.3.1, we define a random matrix S̄ that verifies x̄ = S̄y. Here S̄ can
be considered as a weighted averaging operator. Then, rewriting x̄ = S̄y, one
has: ∑

i∈V
qi Var(x̄i) =

∑
i∈V

qiE[(S̄y)2
i ]− y>K>QKy,

= (E[||S̄y||2Q])− y>K>QKy.
(3.10)

Here we invoke the identitya S̄QS̄ = QS̄:∑
i∈V

qi Var(x̄i) = E[y>S̄>QS̄y]− y>K>QKy,

= y>E[QS̄]y− y>K>QKy,

= y>(QK− K>QK)y.

(3.11)

aThis result might not be seem straight-forward but easy to check by calculating the results of
the matrix products

Similar to x̃, the variance of x̄ is zero for a constant measurement vector y = c1 and
it becomes non-zero when y contains some variation between nodes. However, x̄
has a significant difference for highly varying signals. This is easy to observe in case
of graph signal filtering which is illustrated in Fig. 3.6.

Overall, x̄ gives theoretical guarantees for the improvement in estimating x̂ while it
does not compromise the run-time efficiency. One can calculate the local weighted
averages by a single pass over the signal y, yielding O(n) time complexity, which
is dominated by the cost of sampling a forest. In practice, we observe over vari-
ous graphs that x̄ brings substantial performance improvement. Nevertheless, we
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Fig. 3.6.: In this example, we again consider the case of graph signal filtering with q = 1.
The variance of x̄ then becomes y>(K− K2)y. We plot the spectrum of the matrix
(K− K2) w.r.t. the graph Laplacian eigenvalues/graph frequencies and compare it
with the case of x̃. As a filter, (K − K2) acts like a band-pass filter i.e. its transfer
function only takes high values for a particular range of frequencies, called the
pass-band, that are neither high, nor low. Thus the quadratic formula y>(K− K2)y
will take higher values whenever y is mostly composed by the frequency components
that are in the pass-band. Also note that in comparison to x̃, x̄ is always better as
illustrated.
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are capable of even going beyond this performance by applying another variance
reduction technique. We detail this technique in the next section.

3.3.2 Variance Reduction via Control Variates

Consider again the problem of estimating µX from the samples of the random
variable X. The control variate (CV) method proposes to take another random
variable Y , also called control variate, that has:

• a known or easy to calculate expectation µY ,

• non-zero correlation with the estimated quantity i.e. Cov(X,Y ) 6= 0.

Given this ingredient, we define another estimator as follows:

Z := X − α(Y − µY ),

where α ∈ R is a hyper-parameter. An immediate result is that Z is an unbiased
estimator of µX regardless of the value of α, as E[Z] = E[X]− α(E[Y ]− µY ) = µX .
However, the variance analysis is closely related to the value of α. Let us write the
variance of Z in terms of the variance of X, Y and α:

Var(Z) = Var(X) + Var(αY )− 2 Cov(X,αY ),

= Var(X) + α2 Var(Y )− 2αCov(X,Y ).
(3.12)

To ensure Var(Z) < Var(X), one has to verify that:

α2 Var(Y )− 2αCov(X,Y ) < 0

Assuming α > 0, one obtains:

α <
2 Cov(X,Y )

Var(Y ) .

This bound ensures variance reduction. Yet, we can still go beyond this analysis and
derive the optimum value for α. To do so, we take the derivative of Var(Z) with
respect to α and set it to zero.

∂Var(Z)
∂α

= 2αVar(Y )− 2 Cov(X,Y ) = 0.
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Solving this equation gives:

α? = Cov(X,Y )
Var(Y ) . (3.13)

Plugging α?, we get a reduced variance as follows:

Var(Z) = Var(X)− Cov(X,Y )2

Var(Y ) .

In many applications, α? is not necessarily accessible as it is a ratio of two variances
that are not often available. A common practice to overcome this issue is to estimate
it from the samples of X and Y :

α̂ = Ĉov(X,Y )
V̂ar(Y )

,

where Ĉov(X,Y ) and V̂ar(Y ) are sample variance formulas. In doing so, one can
either use extra samples of X and Y to compute α̂ or use the same samples for
computing both α̂ and Z. The former option gives an unbiased estimator at the
cost of having extra samples. In the latter, the resulting estimator might have a
bias as α̂ and Z are calculated from the same samples. However, in [Owe13], the
author discusses that the bias diminishes faster than the Monte Carlo error w.r.t. the
number of samples, i.e. O(N−1) compared to O(N−1/2). Therefore, as N grows, the
bias becomes smaller compared to the Monte Carlo approximation error.

We find a simple adaptation of the control variate technique on the forest-based
estimators x̃ and x̄. This adaptation is mainly inspired by the gradient descent
algorithm for solving Prob. 3.1.1. Let us briefly revisit this algorithm:

Definition 3.3.3 (Gradient Descent). Consider the following optimization prob-
lem:

x̂ = argmin
x∈Rn

F (x)

s.t. F (x) = 1
2x>Kx− x>y.

Notice that the solution of this problem is also x̂ = Ky. The gradient descent
algorithm suggests iteratively approximating the solution. It picks an arbitrary
initial vector x0 ∈ Rn and updates it as follows:

xk+1 := xk − α∇F (xk), k = 1, 2, . . .
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Fig. 3.7.: We plot the loss function F (x) for x = [x1, x2]> ∈ R2 and mark the path followed
by the gradient descent algorithm to reach the point that minimizes F (x) (q = 1.0
and α = 0.001).

where ∇F (xk) = (K−1xk −y) and α ∈ R. This iteration updates the solution by
taking a step in the opposite direction of the gradient of the loss function F (x)
which is the steepest descent to the solution (See Fig. 3.7).

We present another unbiased estimator by proposing to use the gradient descent
update as the control variate.

Definition 3.3.4. Given the forest estimate x̄, we apply a single step of gradient
descent algorithm, which yields the following estimator:

z̄ := x̄− α(K−1x̄− y).

The unbiasedness of z̄ is easy to see as E[z̄] = E[x̄] − α(K−1E[x̄] − y) = Ky. The
variance highly depends on the choice of α as discussed before. From Eq. (3.13),
the optimal choice is:

α? = tr(Cov(K−1x̄, x̄))
tr(Cov(K−1x̄)) = tr(K−1 Cov(x̄))

tr(K−2 Cov(x̄)) ,
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where Cov(x̄) = [Cov(x̄i, x̄j)]i,j ∈ Rn×n is the auto-covariance matrix of x̄. Com-
puting α? requires computing Cov(x̄) which is not available without expensive
operations. On the other hand, one can calculate α̂ from the samples of x̄ much
more cheaply. In numerical experiments, this choice of α often reduces the variance
near optimal despite the aforementioned bias. Yet, one may still want to ensure
the variance reduction regardless of how much it is reduced. When this is the
case, we suggest using the classical arguments of gradient descent literature for
the step size. By doing so, we find a cheap constant for α that guarantees variance
reduction:

Proposition 3.3.3. Define the maximum degree of a graph as dmax := maxi∈V{di}.
Fixing α = 2q

q+2dmax guarantees that:

||z̄− x̂||2 ≤ ||x̄− x̂||2. (3.14)

Proof. The inequality in (3.14) yields a step size such that the result gets closer
to the solution at every step. Expanding the definition of z̄:

||x̄− x̂− α(K−1x̄− y)||2 ≤ ||x̄− x̂||2,

||(I− αK−1)(x̄− x̂)||2 ≤ ||x̄− x̂||2.
(3.15)

This inequality is satisfied if the eigenvalues µ1, . . . , µn of the matrix (I− αK−1)
verifies:

|µi| ≤ 1, ∀i ∈ {1, . . . , n},

In terms of the graph Laplacian eigenvalues, one has:

∀i ∈ {1, . . . , n}, |1− αλi
q
− α| ≤ 1,

0 ≤ α ≤ 2q
λi + q

.

0 ≤ α ≤ 2q
λn + q

.

Recalling λn ≤ 2dmax [Van10] finishes the proof.

Indeed, this choice of α is cheaper compared to α̂ and introduces no biases. However,
it might provide a much smaller variance reduction compared to optimal in certain
cases. This is mostly because λn ≤ 2dmax is not necessarily a tight bound, and the
constraint in (3.14) might be too excessive for taking a safe step, and thus it might
slow down the algorithm. In order to clearly illustrate these differences, we consider
the following case study:
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Different Choices of α

In this example, we consider the signal denoising problem on two graphs
generated by two random models, namely random k-regular and Barabasi-
Albert. We are motivated to choose these models as they have opposite
characteristics in terms of their degree distribution. While the random k-
regular model always generates graphs in which all degrees are fixed to k,
the graphs generated by the Barabasi-Albert model typically have spread
degree distributions. For simplicity, we take a random signal generated from
N (0, I). We apply smoothing via the direct computation (to compute x̂) and
the forest-based estimators x̄ and z̄. In Fig. 3.8, we plot the mean squared
error of these estimate with x̂ for varying values of α.
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Fig. 3.8.: Empirical mean squared error of x̄ (orange horizontal line) and z̄ (blue
parabola) w.r.t α on two graphs generated by random models. On the left
is a random regular graph with n = 1000 and m = 10000. On the right is
a Barabasi-Albert model with parameter k = 10 resulting in n = 1000 and
m = 9900. The green (resp. red) vertical dashed line shows α = 2q

q+2dmax

(resp. the estimated α̂ from the samples). The blue dot represents the best
possible variance reduction obtained for α = α?. The number of Monte
Carlo samples is set to N = 10, and the error results are averaged over 200
realizations. The signal is a random vector generated from N (0, I).

In these plots, we focus on three points that correspond to α? (the optimal
solution), α̂ (the estimate from samples) and α = 2q

q+2dmax (the constant from
Prop. 3.3.3). In the case of a regular graph, both options for α give a very
close performance to the optimal choice α?. This is because λn ≤ 2dmax in
a regular graph in this case gives a tight upper bound thus α = 2q

q+2dmax is
very close to the optimal choice. This drastically changes when we switch
to a highly irregular graph. In this case, α̂ continues to give a performance
next to the optimal, whereas choosing α = 2q

q+2dmax becomes too excessive for
reducing the error.
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This covers our analysis of variance reduction techniques on the forest-based esti-
mators. Indeed, the variance reduction literature is much broader than these two
techniques. We observe two main issues in bringing other methods to play; the first
and fundamental issue is that it is not often obvious how to adapt these methods
efficiently for our particular case. The variance reduction methods often require
some prior knowledge on the estimated quantity that is not necessarily available
in our case. The second is that even if the necessary conditions for applying a VR
method are satisfied, anticipating if it would substantially decrease the variance or
not is another question. This requires a good understanding of the random variable
and its distribution. In particular, we need to know how x̄ (or other forest estimates)
varies with different samples of ΦQ, which is not straightforward to grasp. In the
case of the proposed methods, we are able to overcome these issues. Yet it may be
still possible to go beyond with other methods as long as these issues are solved.

In the following sections, we compare the proposed methods with the State-Of-The-
Art (SOTA) algorithms in a graph signal denoising setup. Then, we will take a look
at possible use cases of the proposed estimators within certain machine learning and
optimization applications. In particular, we will look into certain cases where the
computation Ky is needed, and the expensive direct computation can be avoided by
the forest-based estimators.

3.3.3 Empirical Comparisons with SOTA Algorithms

In this section, we present our empirical comparisons of the forest-based estima-
tors x̄ and z̄ with the state-of-the-art algorithms, namely Chebyshev polynomial
approximation (Pol) [SNFOV13] and the conjugate gradient (CG) method (with and
without preconditioning) [Saa03] in approximating the exact solution x̂. The exper-
imentation setup we use is heavily adapted from our journal paper [PABT21a].

3.3.3.1. Experimentation Setup

Datasets. We run our experiments over three benchmark datasets, namely Cora,
Citeseer and Pubmed. The following table summarizes their properties: The first two
datasets Cora and Citeseer are not connected graphs. Therefore, in those graphs, we
only keep the largest connected component and eliminate the rest.

Graph signals. In this experimentation, we consider the graph signal denoising
problem over various graphs, in which we are given the noisy measurements y = x+ε
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Tab. 3.1.: Benchmark Graph datasets

Dataset #Nodes #Edges #Classes
Citeseer 2110 3668 6

Cora 2485 5069 7
Pubmed 19717 44324 3

with ε ∈ N (0, σ2) and the underlying graph. By solving the problem in (3.1), we
compute the denoised signal as follows:

x̂ = Ky with K = q(qI + L)−1 (3.16)

We assume the original signal x is a k-bandlimited signal which verifies:

x =
k∑
i=1

αiui

where the ui’s are the lowest k graph Fourier basis and the αi’s are the lowest k
graph Fourier coefficients of the signal. In the experiments, we artificially generate
such signals by generating αi’s at random. Then, we add Gaussian noise in order to
obtain the noisy measurements y. In the whole experimentation, we set k to 50, 50
and 500 for Cora, Citeseer and Pubmed datasets, respectively. The noise variance σ
is adjusted per signal such that the signal-to-noise ratio (SNR) of the noisy signal
equals to 2.

Parameter tuning. Over all graphs and graph signal realizations, we set the param-
eter q to the value that gives the best denoising performance (that is, to the value of
q minimizing ||x− x̂||2).

Performance Metrics. We compare all the algorithms by looking at two performance
metrics. Given the solution by an algorithm x?, we look at the approximation error
||x̂− x?||2 and the reconstruction error ||x− x?||2. While the former measures the
quality of the approximation to x̂, the latter gives the denoising performance of the
algorithm.

Experimentation Procedure. The procedure we follow in the experiments is three-
fold:

• Generate a noisy signal y,

• Tune the hyperparameter q by a grid-search,

• Run the algorithms and measure the run-time, approximation and reconstruc-
tion error.
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We note that all the experiments are implemented in Julia programming language
and run in a single thread of a laptop.

3.3.3.2. Results

As aforementioned, the algorithms in comparisons are: the RSF based estimators
x̄ and z̄, Chebyshev polynomial approximation and conjugate gradient 1 method
with and without preconditioning. In the preconditioned case, we use the Algebraic
Multigrid (AMG) algorithm 2 as the preconditioner. In all of these algorithms, there
is an iteration parameter. This parameter typically adjust the trade-off between the
run-time and the approximation error of the algorithm. These parameters are:

1. The number of forests for x̄ and z̄

2. The polynomial’s degree in Chebyshev approximation

3. The number of iterations for CG and preconditioned CG (PCG).

During the experiments, we vary these parameters in order to observe the per-
formance of the algorithms over changing run-time. For each algorithm and
each graph, it is swept through 17 logarithmically spaced values between 1 and
100: {1, 2, . . . , 62, 78, 100}, corresponding to the 17 plotted markers forming each
curve.

In Fig. 3.9, we present our results over 3 benchmark graph datasets. From the
approximation error results, one can see that the deterministic methods CG and
Chebyshev polynomial approximation converges very quickly to the exact solution
whereas the forest estimators are stuck with a Monte Carlo convergence rate (which
is linear in log-scale). Therefore, the RSF-based methods cannot compete with
the deterministic methods for obtaining a low approximation error. On the other
hand, from the results on the reconstruction error, we observe that the forest-based
estimators are comparable with the other methods. In other words, it is not necessary
to have a good approximation in order to get a good reconstruction of the signal.
This is because there is no point to compute an inaccurate quantity (in this case, it is
x̂) with a high accuracy (See [Bot12]). In addition, we can see by both performance
metrics (more clearly in reconstruction error), z̄ is superior to x̄. The control variate
estimator z̄ achieves better approximation and reconstruction without taking too
much additional time.

1Julia implementation https://julialinearalgebra.github.io/IterativeSolvers.jl/dev/
2Julia implementation https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl
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Fig. 3.9.: Approximation and reconstruction error of the algorithms CG (blue and cyan),
polynomial approximation (orange) and the forest estimators x̄ (light green) and
z̄ (dark green) for solving graph signal denoising problem. The dark dashed line
indicates the time taken by the direct solution (backslash operator in Julia). In the
reconstruction error plots, we also add the error of the initial measurements y in
green dashed line and the error of the exact solution x̂ in red line.
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3.4 Several Use Cases of the RSF-based Estimators

The scope of Eq. (3.1) is not limited to the signal denoising problem. We already
know that solving this optimization problem under certain constraints corresponds
to solving the Dirichlet boundary problem and semi-supervised learning on graphs.
On top of that, we encounter this formulation in solving some graph-related op-
timization problems. In these cases, solving these problems requires repeatedly
solving Prob. (3.1.1) which leaves us with the expensive computation of x̂ at every
step. In the following, we show how forest-based estimators can be used in order to
circumvent this issue. We conclude each section by giving some illustrations of the
forest estimators.

3.4.1 Semi-supervised Learning on Graphs

We consider the node classification problem on graphs. Given a few label information A few labels
given on a graph:

We seek the others:

over vertices, the main goal is to correctly infer the labels for the other nodes by
using the graph structure. Among many possible formulations and solutions, a
well-known baseline algorithm is due to the semi-supervised learning algorithm
proposed in [Zhu05] and later unified under Prob. 3.1.1 by [AMGS12]. A formal
definition of the problem and the algorithm is as follows:

Problem 3.4.1 (Semi-supervised learning for node classification). Let us consider
a node classification problem over K classes. We denote the vertices with the known
labels by V ⊂ V . In a node classification problem, we typically have |V | � n as we
have a few labeled nodes and define a label encoding as follows:

∀i ∈ V, k ∈ {1, . . . ,K}, Yi,k =

1 , if node i belongs to class k

0 , otherwise

Given the matrix Y ∈ Rn×K , the main goal is to infer labels for the vertices in
V \ V . In a very classical setup, we evaluate a function F : V × {1, . . . ,K} → R
(also called classification function) such that for each node i ∈ V \ V we assign its
label by computing arg maxk∈{1,...,K} F (i, k). A baseline method for computing all
evaluations F = [F (i, k)]i,k boil down a particular case of Prob. 3.1.1:

F̂ = argmin
F∈Rn×K

||Y − F||2Q + tr(F>LF). (3.17)
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The solution to this optimization scheme is a smooth function over the graph, which
still preserves the original labelling information encoded in Y. In other words, F̂
gives a diffused version of the given labels in Y through the neighborhoods of the
graph. As in Prob. 3.1.1, one has the closed form solution as follows:

F̂ = (Q + L)−1QY. (3.18)

Again, this leaves us with the expensive computation of Ky for computing each
column of F̂.

Adapting the forest-based estimators for approximating all columns F̂ is easy; one
only needs to sample ΦQ by passing Q = diag(Q) and compute x̄ (or z̄) per class k
by passing y = Y:|k. As we can re-use the same forests to estimate each column F̂,
we avoid the cumbersome of re-sampling.

Different configuration for Q yields a different type of regularization. For exam-
ple, for Q = qD, the solution becomes F̂ = q(qI + Lrw)−1Y where one obtains a
regularization with the random walk Laplacian Lrw = D−1L. On top of this, one
can obtain a regularization with the normalized graph Laplacian Ln = D−1/2LD−1/2

by slight modifications on the formulation [AMGS12]. All of these cases are still
straightforward to adapt for the RSF estimators. We find a particular case of this
formulation in which the adaptation of the forest estimators might not be obvious.
This case is due to the celebrated algorithm for semi-supervised learning called label
propagation [Zhu05]. Let us detail this algorithm by showing how it is linked to the
formulation in Eq. (3.17). Then, we show how to use the RSF-based estimators to
approximate the solution given by this algorithm.

As described in [Zhu05], label propagation consists of the following steps:

1. Set k ← 1.

2. Set F(k) ← D−1WY and increment k,

3. Reassign F(k)
V |: ← YV |:,

4. Go to step 2 unless F(k) satisfies a convergence criteria e.g. ||F(k) − F(k−1)|| ≤ ε
for some ε > 0.

This iterative algorithm propagates the known labels through the neighborhoods
at every step. In doing so, it uses the random walk operator P = D−1W to diffuse
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the information encoded in Y. As a result it converges to a closed form solution as
follows:

F̂i,k =


Yi,k if i ∈ V(
−(LU |U )−1LU |V YV |:

)
i,k

otherwise
, (3.19)

where U = V \V . This solution, in fact, is a limited case of the solution of Eq. (3.17).
We show this case in the following proposition:

Proposition 3.4.2 (Label Propagation). For the solution in Eq. (3.18), consider
the configuration of the hyperparameters:

Qi,i =

q if i ∈ V

0 otherwise

Then, the limit limq→∞ F̂ converges to the solution given in Eq. (3.19).

Proof. Let IV ∈ Rn×n be a matrix with (IV )i,i = 1 whenever i ∈ V and zero
elsewhere. For the given parameter setting, the matrix K takes a form of:

K = (Q + L)−1Q = (qIV + L)−1qIV = (IV + q−1L)−1IV .

We re-write this inverse in block matrix form (without loss of generality, the
nodes in V are enumerated 1, . . . , |V |):

K =
[
q−1LV |V + I q−1LV |U
q−1LU |V q−1LU |U

]−1

IV .

The non-zero blocks of this matrix can be computed by block matrix inversion
formula:

K =
[

A 0
−(LU |U )−1LU |V A 0

]
.

where A = (q−1LV |V + I− q−1LV |u(Lu|u)−1Lu|V )−1. As α goes to infinity, one has

lim
q→∞

K = lim
q→∞

[
A 0

−(LU |U )−1LU |V A 0

]
=
[

I 0
−(LU |U )−1LU |V I 0

]
.

This proposition in fact gives us a way to adapt the RSF estimators for approximating
the solution in Eq. (3.19). We sample ΦQ with the given parameter setting. By
definition, we only have non-zero q values over the vertices in V . As q → ∞, the
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loop-erased random walks in Wilson’s algorithm are always interrupted whenever
they reach a node in V . Therefore, all sampled forests are conditioned to be rooted
in V . Moreover, x̄ converges to x̃, as the roots in ΦQ given the partitions are no
longer random as we have a predefined root set V .

We finish this section by illustrating the forest estimates in solving graph based SSL
over some benchmark datasets, namely Cora, Citeseer and Pubmed. These datasets
were previously introduced in Table 3.1

In the simulations, we consider a setup where k � n vertices per class are labeled
and the goal is to classify other vertices given the labeled ones and the underlying
graph. In doing so, we use two solutions, namely label propagation (LP) [Zhu05]
and generalized SSL (gSSL) [AMGS12]. In both solutions, one needs to calcu-
late the classification function F by computing x̂ per each class under different
parametrizations. As we previously discussed, one can estimate both cases by using
the forest-based estimator x̄ without taking expensive matrix inverses. In the follow-
ing illustration, we compare the classification accuracy yielded by x̄ with that of x̂.
In doing so, we use the following procedure:

• Select k � n vertices at random per class as the labeled nodes,

• Compute the classification functions FLP and FgSSL given LP and gSSL by
using x̂ and x̂ per class.

• For each vertex i, assign arg maxc Fi, c as its class and calculate the classifica-
tion accuracy as the ratio of correctly predicted labels to the total number of
predictions.

In Fig. 3.10, we plot the classification accuracy of LP, gSSL and their forest estimation
while varying the number of labeled vertices per class k. We average the results
over 50 realizations. The empirical results show that the forest estimator for gSSL
gives close estimates for the exact solution in Citeseer and Cora whereas it fails
to provide the same performance in Pubmed. This is probably due to insufficient
number of labeled vertices or poor hyper-parameter choice for the forest estimators.
Moreover, one can also deduce x̄ need much less forest realizations to reach the
exact solution of LP rather than the generalized SSL. However, sampling a forest for
LP might take more time compared to the time needed for gSSL. For example, in the
Pubmed graph, for k = 20, sampling a single forest for LP (resp. the generalized
SSL) takes 6.3× 10−2 (resp. 1.4× 10−3) seconds averaged over 100 repetitions in a
single threaded run time of a laptop.
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Fig. 3.10.: The accuracy vs number of labeled vertices per class. We give the classification accu-
racy of gSSL (the first column) and LP (second column) and their forest estimates
over the datasets Cora, Citeseer and Pubmed. In each plot, the performance of the
exact solution is given in the black line. For gSSL, we compute x̄ over 50 (light
green) and 500 (dark green) forest realization. In the case of LP, the number of
realization becomes 5 (light green) and 50 (dark green). We also add the perfor-
mance of a classifier that returns a label at random (random classifier) and returns
the same label all the time (constant classifier).
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3.4.2 RSF-based Quasi Newton’s Method

The graph Laplacian regularization is not restricted to the least-squares problem. In
many other problems on graphs, one minimizes the loss function:

L(x) = fy,q(x) + x>Lx

to find the solution:
x? = argmin

x∈Rn
L(x).

In case of LS i.e. fy,q(x) = q||x − y||22, this problem has a closed-form solution.
However, this is not the case for many other formulations such as fy,q(x) = q||x−y||1
or cross-entropy loss function. In such cases, the optimization literature is capable of
serving a large diversity of algorithms to approximate the solution. For convex and
differentiable fy,q(x), which we are interested in this thesis, the popular approach is
the gradient descent algorithms which are generically introduced in 2.3.3. As long
as we have access to the gradient ∇fy,q(x), one can approach the solution with a
convergence rate. If the loss function is also twice-differentiable, a faster approach
called Newton’s method (sometimes called Newton-Raphson method) brings the
second derivatives into the game and derives the following iteration [HTFF09]:

xk+1 = xk − H−1∇L(x) (3.20)

where H =
[
∂2L(x)
∂xi∂xj

]
i,j

is the Hessian matrix which contains the partial second

derivatives of the loss function. Let us assume that for i 6= j, fy,q(x)
∂xi∂xj

= 0. This implies
that only prior correlation between the estimated parameters are induced by the
graph. Also, by the convexity one has ∂2fy,q(x)

∂x2
i
≥ 0. Then the Hessian matrix boils

down to a positive semi-definite matrix H = L + diag(g) where gi = ∂2fy,q(x)
∂x2
i

for all
i ∈ V.

Newton’s method yields much faster convergence than the gradient descent. In-
tuitively it takes a more direct route to the solution by using extra information
on the curvature. However, this extra information comes with a cost. Mainly,
computing the inverse of the Hessian matrix is expensive when n is very large.
To avoid this expensive operation, H−1 is often replaced with its approximations.
This branch of algorithms is called quasi-Newton methods. SR1 (Symmetric rank-
one) [CGT91], BFGS (Broyden–Fletcher–Goldfarb–Shanno) [Fle70] and DFS (Davi-
don–Fletcher–Powell) [Dav91] are some of the well-known algorithms that approx-
imate H−1 deterministically. As these algorithms are cheap approximations, their
convergence rate is naturally slower (super-linear) compared to the rate of Newton’s
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method (quadratic). However, in large dimensions, they may reach the solution
more quickly.

Interestingly, the forest-based estimators also can be used for approximating the
update in Newton’s iteration. In particular, at every iteration k, we first sample RSFs
with the parameter set Q = {g1, . . . , gn}. Then we evaluate x̄ over these forests with
the measurements y =

[
∇L(xk)i

gi

]
i∈V

. It is straightforward to see that this setup x̄
gives an unbiased estimate of the update at every iteration. However, as the updates
are stochastic, the convergence might not be guaranteed. Nevertheless, in practice,
it is possible to guide the iterations towards the solution by adjusting the step size.
In this case, we consider the following iteration:

xk+1 = xk − βx̄,

where β ∈ Rn. Coupling with line search approaches [BBV04], it is possible to keep
the iterations within safe ranges. We illustrate this technique on an image denoising
application where we consider a Poisson prior for fy,q(x).

Removing Shot Noise from an Image

Fig. 3.11.: The original (left) and noisy im-
age (right). The peak signal-to-
noise ratio for the noisy image
is 17.13

In image de-noising, it is important
to know or assume the probabilistic
noise model correctly. A big chunk
of de-noising algorithms [LBU10] as-
sumes that the noise is generated by
a Gaussian or Poisson process. While
the former (Gaussian) assumption
can be easily motivated by the cel-
ebrated central limit theorem, the
latter (Poisson) is due to a physical

phenomenon that is more specific to the image processing domain. An imag-
ing device is an array of sensors where each sensor measures the intensity
of the light by counting the photons hitting the sensor. This count turns
out to be random at a constant level of light. Due to this randomness, the
measurements collected from the sensors are noisy. This type of noise is called
shot or Poisson noise (See Fig. 3.11). Further derivations deduce that the
Poisson distribution is a natural model for the random number of photons
hitting each sensor, hence the name.
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We use the graph Laplacian regularization in this illustration to remove the
shot noise. Here we consider a 2D-grid graph in which each sensor is a node
connected to the sensor on its left, right, top and bottom.
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Fig. 3.12.: The images denoised by Newton’s method where the updates calculated by
x̂ (left) and x̄ (middle). On the right, we plot the loss function through
the iterations of Newton’s method. We assume a 2D-grid graph where
n = 128 × 128. The hyperparameter is set to 0.1, and α is selected at
every iteration by approximate line search algorithm. For the forest-based
updates, we sample N = 40 forests. The peak signal-to-noise ratios on the
final images are found as 24.84 for both images.

Let us denote the random number of photons counted by the sensor i by Yi.
Then we assume:

P(Yi = yi|λ = exp(xi)) = exp(xi)yi exp(− exp(xi))
yi!

,

where λ is the parameter of the Poisson distribution. Given this prior, we
adapt our fidelity term with the following log-likelihood function:

fy,q(x) = −q
∑
i∈V

logP(Yi = yi|λ = exp(xi)) =
∑
i∈V
−yixi + exp(xi) + log yi!.

Plugging this leaves us with the following optimization problem:

x? = argmin
x∈Rn

q

∑
i∈V
−yixi + exp(xi)

+ 1
2x>Lx.

As this problem does not have a closed-form solution and the loss function
is convex and twice-differentiable, Newton’s method is suitable for approxi-
mating the solution. Let us quickly write the gradient and the Hessian for this
loss function:

∀i ∈ V, ∇L(x)i = (Lx)i + q(exp(xi)− yi) and H = L + q diag g,
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where ∀i ∈ V, gi = exp(xi) ≥ 0. Then the forest-based estimation of the
Newton’s update boils down evaluating x̄ under the parameter setting Q =
{q exp(x1), , . . . , q exp(xn)} and y =

[
∇L(xk)i
qgi

]
i∈V

. In Fig. 3.12, we give an
illustration of this setup.

3.4.3 L-1 Regularization on Graphs

The graph-based regularization can be found in various forms. A generalization can
be made by the p-Laplacian operator:

rG,p(x) =

 ∑
(i,j)∈E

w(i, j)p/2|xi − xj |p
 .

In case p = 2, one recovers rG,2(x) = x>Lx. In this section, we focus on another
popular choice, p = 1. When applied, this type of regularization, sometimes called
the edge LASSO (Least Absolute Shrinkage and Selection Operator), minimizes the
variation of the solution over the graph in the LASSO sense. In turn, the solution
usually forms a piece-wise constant signal over the vertices. Let us rewrite the
optimization problem by combining it with this new regularization:

x? = argmin
x∈Rn

q

2 ||x− y||22 + ||Bx||1. (3.21)

This formulation yields a convex optimization problem. However, it does not
have a closed-form solution, unlike the case of p = 2, as the corresponding loss
function is not differentiable everywhere. Yet, there are various algorithms to
compute the minimizer x?. The most straightforward approaches, such as ISTA,
use the proximal gradient methods. More advanced methods such as ADMM and
IRLS provide faster convergence to x? by some extra operations. In the case of
ADMM and IRLS, this operation boils down to inverting a matrix in the form of the
regularized Laplacian at every iteration. This section shows how to adapt the forest
estimators for approximating this expensive inversion. We restrict ourselves to the
case of ADMM. However, one can find the same adaptation for IRLS in our journal
paper [PABT21a].
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(a) Original Image x (b) Noisy Measurements
y, PSNR = 13.98

(c) ADMM with x̂ up-
dates, PSNR=22.44

(d) ADMM with x̄ up-
dates, PSNR=22.44

(e) Loss function through
iterations

Fig. 3.13.: We illustrate ADMM algorithm for image denoising application. We are given a
noisy measurements y = x + ε where the original image x is unknown and the
noise is Gaussian i.e. ε ∼ N (0, σ = 0.2). We denoise the image by solving Eq (3.21)
and the regularization parameter q is found as 3.3 by a grid search. In (c) and (d),
we give the solutions by ADMM the algorithm where the updates are calculated via
the exact and forest-based solutions. In both cases, ADMM is terminated after 500
iterations and ρ = 0.2. The forest updates are averaged over 10 forests realizations
per iteration. Finally, in (e), we plot the objective function across the iterations.
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The ADMM algorithm for the problem in Eq. (3.21) takes the following three steps
iteration scheme [GM76]:

xk+1 = argmin
x∈Rn

(
q

2 ||x− y||22 + ρ

2 ||Bx− zk + uk||22
)

zk+1 = argmin
z∈Rm

(
||z||1 + ρ

2 ||Bxk+1 − z + uk||22
)

uk+1 = uk + (Bxk+1 − zk+1).

The parameters xk, yk and uk are arbitrarily initialized and are updated at every
step, and ρ is a user-defined parameter. The most time-consuming part in this
iteration is the first step, where we need to compute the inverse:

xk+1 = (qI + ρL)−1(qy + ρB>zk − ρB>uk).

Instead of directly computing this inverse at every step, one can save a significant
amount of time by replacing them with forest-based estimates. Moreover, unlike in
the case of Newton’s method, we do not have to re-sample RSFs at every step. After
generating N samples of Φq/ρ, we can quickly re-evaluate the forest estimates at
every step k by simply updating the input signal.

We give a proof of concept for this forest-based ADMM algorithm by a simple
example in Fig. 3.13. In this illustration, we consider the image denoising problem
with Gaussian noise. In order to denoise the given measurements in Fig. 3.13b,
we solve Eq. (3.21) in which the underlying graph is 128× 128 2-D grid. In doing
so, we use the ADMM algorithm with two types of updates for calculating xk+1 at
every iteration; these are the exact computation and the forest-based estimation via
x̄. In qualitative results (Figs. 3.13c and 3.13d), we observe that the final result is
almost the same for both types of updates. By monitoring the loss function through
the iterations, we also observe that the forest-based updates, for a few realizations
of forests (N = 10), closely follow the exact updates in minimizing the objective
function.

3.5 Conclusion

Network structured data often come with some signal/information over the vertices,
called graph signals. These kinds of signals are subject to noise or incompleteness.
Many classical signal processing tools have been adapted for graph signals in dealing
with these issues. A well-known technique gives a unified solution to these two
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problems by solving the optimization problem 3.1.1. This problem admits a linear
closed-form solution with y. Moreover, it appears within several graph-related
contexts, namely graph signal filtering and Dirichlet boundary problem. In the
former, we see that a particular case of this solution, i.e. Q = qI and y ∈ Rn,
corresponds to filtering a graph signal with the low-pass transfer function g(λ) = q

q+λ .
In the latter, we consider discrete partial differential equations defined on graphs that
model various physical phenomena. We show that the solution of these equations is
again a particular case (Q = limq→∞ IV ) of the solution of Prob. 3.1.1.

Indeed this one-line solution is of central importance in various fields. However,
directly computing it might not be straightforward as n grows. The time complexity
for computing the inverse is O(n3), which is prohibitive whenever n is around
thousands or millions. Having state-of-the-art as the approximate methods in large
n, our contributions in this chapter are in avoiding the expensive computations in
estimating x̂. Let us finish by summarizing them:

• We propose an unbiased estimator x̃ for x̂ based on ΦQ,

• The expected time complexity of this algorithm is found as tr(Q+L)−1(Q+D) ≤
2m
q +nwhich remains comparable with SOTA algorithms in terms of the number

operations at every sample (resp. every iteration for CGD),

• We show how to adapt two variance reduction techniques, namely conditional
Monte Carlo and control variate, to significantly improve the performance of
x̃ (in approximating x̂), yielding two new estimators x̄ and z̄,

• We show three different real-life use cases in which these estimators can
accelerate the complicated intermediate steps.

• The proposed methods are easy to implement and they have a low memory
footprint i.e. O(n). Moreover, they are easy to parallelize as we can start
random walks from arbitrary nodes for sampling RSFs.

Given these fruitful results and diverse applications, in the next chapter, we shift
our focus on the estimation of other useful quantities, including tr(K) or effective
resistances. In turn, we find forest-based algorithms and significant improvements
on the existing ones.
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RSF Estimation of Some
Important Graph Quantities

4

„All exact science is dominated by the idea of
approximation.

— Bertrand Russell

The forest estimators for x̂ are not the only outcome of our hike through random
spanning forests. Estimating the trace tr(K), the effective resistances and other graph
filters than q

q+λ are three other objectives which we can achieve by using RSFs. In a
higher abstraction, the first problem can be considered as the estimation of the trace
of an inverted matrix where the inverse is expensive to take. Various applications
require such an estimation. Closer to our work, the estimation of tr(K) is of central
importance in the hyper-parameter tuning in Prob. 3.1.1 i.e. tuning of q. Similarly,
effective resistances have a broad set of applications [SS11; SXGRS20; AALG17;
WPKV14]. Initially studied in electrical networks, effective resistances define a
measure over the vertices, which has many theoretical links with random walks and
USTs. However, directly computing them might be computationally demanding as
it requires access to the entries of the pseudo inverse L†. Finally, we show that the
graph filters that can be obtained by RSFs are not limited to a single transfer function
q

q+λ . In fact, one can reach a wide family of filters via RSFs by slight modifications.
We dedicate this chapter to presenting our novel RSF algorithms for estimating tr(K)
and the effective resistances and we show how to leverage RSF estimators for other
types of graph filters.
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4.1 Estimation of the Trace of the Regularized Inverse
of the Laplacian

Reconsider the simplified version of the denoising problem 3.1.1:

x̂ = argmin
x∈Rn

q||x− y||22 + x>Lx.

Recall that q is a user-defined parameter. However, the good value of q in the
sense of denoising performance cannot be explicitly known. Fortunately, there are
several ways, such as AIC, BIC, cross-validation methods and SURE [HTFF09], to
find a near-optimal value for q. All of these algorithms either need to compute the
diagonal entries Ki,i’s, or the trace tr(K) where K = q(L + qI)−1. However, in both
cases, one needs to calculate K for different values of q. As aforementioned, the
direct computation comes with a prohibitive cost for large n. This leaves us with
approximate methods. The state-of-the-art algorithm for approximating the trace is
Hutchinson’s estimator [Hut89]:

Definition 4.1.1 (Hutchinson’s estimator). Let p ∈ Rn be a random vector with
each element pi ∈ {−1, 1} and independently distributed as:

P(pi = ±1) = 1
2 .

Given N samples from p, Hutchinson’s estimator for the trace of K is defined as
follows:

h := 1
N

N∑
k=1

p>(k)Kp(k).

4.1 Estimation of the Trace of the Regularized Inverse of the
Laplacian
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It is easy to show that this estimator is unbiased with the permutation property
of the trace and E[pp>] = I:

E[h] = 1
N

N∑
k=1

E[p>Kp] = 1
N

N∑
k=1

tr(E[pp>]K) = tr(K).

Moreover, the variance is tractable:

Var(h) = 2
N

(
tr(K2)−

n∑
i=1

K2
i,i

)
= 2
N

n∑
i 6=j

K2
i,j .

In other words, the variance is equal to the squared sum of the off-diagonal
entries in K.

In some other methods, such as Girard’s estimator, the distribution of p differs, but
they still provide an unbiased estimation. In fact, as long as the random vector
p satisfies E[p] = 0 and E[pp>] = I, one obtains an unbiased estimator by the
averaging of quadratic terms. However, Hutchinson’s method is the estimator that
provides the minimum variance [Hut89]. Even so, it is still subject to two significant
bottlenecks:

• Computation of each quadratic term p>(k)Kp(k) requires computing Kp(k) which
requires inverting 1

q (L + qI),

• As it is a Monte Carlo estimator, it has the convergence rate of O(N−1/2), thus
one might need many samples to reach an very accurate result.

Taking the inverse is not practical with the exact methods, such as Gaussian elim-
ination. Therefore, the solution is often calculated via iterative methods such as
gradient descent algorithms. In dealing with the second issue, one can find many
generic variance reduction methods in the literature [Owe13]. However, it is not ob-
vious how to adapt these methods for Hutchinson’s estimator to obtain considerable
performance gain.

Previously in [BTGAA19], the authors (my supervisors) proposed a simple estimator
for tr(K) with strong theoretical properties:

s := |ρ(Φq)|.

The expectation and variance of this estimator are already noted as:

E[s] = tr(K) and Var(s) = tr(K− K2).
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Moreover, they give an empirical comparison with Girard’s estimator coupled with
several iterative methods for computing Kp. The experimentation over various
graphs shows that the forest estimator often gives the best or at least comparable
performance with state-of-the-art. Inspired by these results, we give two efficient
ways of reducing the variance of the RSF trace estimator. These ways are well-known
generic variance reduction techniques in the Monte Carlo literature. However, their
adaptation for a given Monte Carlo estimator is not evident or sometimes not
possible. The main contribution of this section shows how to adapt these variance
reduction techniques for the forest-based trace estimator [BTGAA19] yielding two
novel estimators for tr(K).

4.1.1 Variance Reduction for Trace Estimation

We adapt two variance reduction techniques, namely the control variate method and
stratified sampling, for reducing the variance of |ρ(Φq)|.

4.1.1.1. Control Variate for Trace Estimation

In this section, we adapt the control variate technique introduced in Section 3.3.2.
Let us briefly recall this technique and how it is applied to the previous estimator
for x̂ = Ky. Given the estimator x̄, we seek another random quantity with a known
expectation. In our case, we chose this quantity as α(K−1x̄− y) and the resulting
estimator is z̄ = x̄ − α(K−1x̄ − y). Let us redefine z̄ as a matrix-vector product
z̄ := Z̄y where Z̄ = S̄ − α(K−1S̄ − I) and S̄ verifies x̄ = S̄y. We already know that
E[Z̄] = K. Then, a new unbiased estimator of tr(K) is defined by taking the trace of
Z̄:

s̄ := s− α(tr(K−1S̄− I))

= s+ α

n− s− 1
q

n∑
i=1

∑
j∈N (i)

w(i, j)S̄i,iI(rΦq(i) 6= j)

 , (4.1)

where s = tr(S̃) = tr(S̄) = |ρ(Φq)|. Here the sum over the neighbors of all the
vertices accumulates the weighted diagonal entries of S̄i,i over the edges that are
between different parts of the partition induced by Φq. We illustrate these edges in
Fig. 4.1.

For certain values of α, s̄ has a reduced variance. In fact, the choices are quite the
same as in z̄. Plugging the identity matrix I ∈ Rn×n instead of y in Prop. 3.3.3, we
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Fig. 4.1.: The edges between trees in a spanning forest (in bold). One needs to track these
edges to compute the control variate introduced in Eq. 4.1. For computing the control
variate induced by S̃, one only needs the edges between trees that are incident to the
roots. In this example, only edge that fits this description is (4, 6).

see that α = 2q
q+2dmax guarantees variance reduction. It is also possible to adapt

the formulas of α̂ for estimating the optimal case α?. Finally, the heuristic value
α = q

q+davg performs very well in practice across various graphs.

Under a proper selection of α, this technique can substantially decrease the variance.
However, it also requires some additional computations. In particular, the additional
computation after sampling a forest for computing s̄ requires traversing the edges
of the graph. By replacing S̄ with S̃, this cost can be decreased at the expense of
accuracy because for computing the control variate in Eq. (4.1), one only needs to
accumulate some edge weights only around the roots instead of all vertices. In this
case, one does not have to compute S̄i,i’s and only need to traverse the neighbours
of the roots. However, this version, denoted by s̃, is worse than s̄ in approximating
tr(K) as S̃ is less accurate S̄.

4.1.1.2. Stratified Sampling for Trace Estimation

Another variance reduction technique that is applicable to our case is stratified
sampling. In a nutshell, stratified sampling is a divide & conquer strategy for
improving Monte Carlo estimation. Let us go back to the generic example of Monte
Carlo estimation where we approximate the expectation µX from the samples of
the random variable X. Now consider another random variable Y whose outcome
space Ω(Y ) is divided into K strata (disjoint parts) C1, C2, . . . , CK such that Ω(Y ) =
∪Kk=1Ck. We assume that Y verifies for all Ck:

• The probabilities P(Y ∈ Ck) are known or easy to compute,

• The conditional random variable X|Y ∈ Ck is easy to sample.
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These constraints might seem a bit technical and hard to satisfy for all cases. However,
whenever such a random variable Y is available, stratified sampling can decrease
the variance significantly by defining a new estimator as follows:

Z :=
K∑
k=1

 1
Nk

Nk∑
j=1

Xj |Y ∈ Ck

P(Y ∈ Ck)

Nk is the number of samples taken from the conditional random variable X|Y ∈ Ck.
The stratified estimator Z is also unbiased since:

E[Z] =
K∑
k=1

 1
Nk

Nk∑
j=1

E[Xj |Y ∈ Ck]

P(Y ∈ Ck)

=
K∑
k=1

E[X|Y ∈ Ck]P(Y ∈ Ck) = E[X] = µX .

Also, the variance of Z reads:

Var(Z) =
K∑
k=1

P(Y ∈ Ck)2 1
Nk

Var(X|Y ∈ Ck).

This variance is guaranteed to be less than that of the original estimator for certain
configurations of Nk ’s. For example, if one can collect samples of X|Y ∈ Ck such
that Nk ∝ P(Y ∈ Ck) for all k, the variance of Z becomes:

Var(Z) =
K∑
k=1

1
NP(Y ∈ Ck)

Var(X|Y ∈ Ck)P(Y ∈ Ck)2

=
K∑
k=1

1
N

Var(X|Y ∈ Ck)P(Y ∈ Ck) = 1
N

EY [Var(X|Y ∈ Ck)] ≤
1
N

Var(X).

The last inequality is due to the law of total variance. In fact, the optimal configura-
tion for variance reduction is:

∀k, Nk ∝ Var(X|Y ∈ Ck)P(Y ∈ Ck)

However, this is not practical in most cases as the conditional variance Var(X|Y ∈
Ck) is often not known explicitly. In the case of forest-based trace estimation,
we find a novel way to apply stratified sampling to reduce the variance. This
adaptation yields a new estimator for tr(K) which often provides the best empirical
performance.
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S =

S(1) S(2) S(3) S(4) S(5) S(6) S(7)


2 7 6 1 Γ Γ 1
Γ 7 2 5 4 4 2
3 7 1 5 1 4 1

...

1

2 3

45

67

Fig. 4.2.: An example of the stack representation (left) and the graph induced by the first layer
(right). The blue nodes indicate the roots sampled at the first layer.

In order to explain our stratification scheme for trace estimation, we need to recall
some aspects of the stack representation of Wilson’s algorithm. Recall the infinite
stack S(i) = [S(i)

1 , S
(i)
2 , . . . ] defined for each node i. Every element in S(i) is an

independent random variable with the probability law P(S(i)
j = k) = w(i,k)

di
. In the

case of sampling RSFs, we add a new node Γ to this representation and slightly
change the probability distribution as:

P(S(i)
j = k) =


w(i,j)
q+di , k ∈ N (i),
q

q+di , k = Γ.

Note that whenever a node has Γ at the top of its stack, it becomes a root. Now we
define a new random set by only looking at the first layer of the stacks:

ρi(Φq) := {v ∈ V : S(v)
j = Γ and j ≤ i}.

In other words, the random set ρi(Φq) contains the random roots in Φq sampled
until their i-th stack popped. See Fig. 4.2 for an example at i = 1. In Wilson’s
algorithm, this set can be seen as the roots sampled up until i-th visit by the random
walks. Notice that as i→∞, we recover the original roots ρ(Φq). For stratification,
we look at the cardinality of this set at i = 1. As all the stacks are independently
sampled at the beginning i.e. i = 1, this cardinality equals a sum of Bernoulli random
variables:

|ρ1(Φq)| =
∑
v∈V

Ber
(

q

q + di

)
,

where Ber(p) ∈ {0, 1} denotes a Bernoulli random variable that is equal to 1 with
probability p. Our main idea here is to use |ρ1(Φq)| as the additional random variable
in stratification of the forest trace estimator s. Indeed, to do so, we need to show
that this new random variable aligns with the constraints of stratified sampling.

The first constraint is to have probabilities that are easy to compute. In order to
verify that this is the case with |ρ1(Φq)|, let us look at its probability distribution. By
definition, |ρ1(Φq)| is a sum of independent Bernoulli variables where each does not
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necessarily have the same parameter. Such random variables, also known as Poisson-
Binomial random variables, are one of the classical random variables in probability
theory [Wan93]. As a result, their distribution has been well studied, and efficient
direct or approximate numerical computations have already been proposed [Hon13].
In the case of large n, the normal approximations (motivated by the central limit
theorem) are able to provide good performance at a very small cost. In this approach,
we approximate the distribution of |ρ1(Φq)| with a normal distribution N (µ, σ2)
where µ = E[|ρ1(Φq)|] =

∑
v∈V

q
q+di and σ2 = Var(|ρ1(Φq)|) =

∑
i∈V

qdi
(q+di)2 . This

approximation highly simplifies any computation related to the probabilities that we
need to calculate as the cumulative/probability mass functions are explicitly known.
Indeed, one can go beyond this approximation via more sophisticated approaches.
However, by doing so, we do not obtain much improvement in practice for trace
estimation. This is probably because the Monte Carlo error is dominant by far.

The second constraint dictates that the conditional random variable |ρ(Φq)| | |ρ1(Φq)| ∈
Ck must be easy to sample for each stratum Ck. The sampling procedure per k can
be considered two-fold:

• Generate a sample S of ρ1(Φq) that verifies |ρ1(Φq)| ∈ Ck,

• Sample |ρ(Φq)| given the sample generated at the first step.

The second step is easy by a simple modification of Wilson’s algorithm for forests. As
S are the roots that are sampled at the first sight, in Wilson’s algorithm, we set S as
the predefined set of roots, and we do not allow any other to be a root at the first visit
of random walks. The forest generated this way is a sample of Φq|ρ1(Φq) = S. For the
first step i.e. generating S that verifies |S| ∈ Ck, the naive approach is the rejection
sampling where we keep sampling from ρ1(Φq) until the constraint |S| ∈ Ck is
satisfied. This approach may terminate very quickly if P(|ρ1(Φq)| ∈ Ck)� 0. Indeed,
this constraint is directly related to how the strata C1, . . . , CK is chosen. In our
case, we approximate the distribution of |ρ1(Φq)| by a normal distribution. Thus,
we can design the strata C1, . . . , CK so that P(|ρ1(Φq)| ∈ Ck)� 0 is verified for all
k ∈ {1, . . . ,K}. Both in theory and practice, we do not see a particular benefit of
having strata with small probabilities for each stratum. Therefore, we choose to use
rejection sampling in the application of trace estimation.

4.1 Estimation of the Trace of the Regularized Inverse of the
Laplacian
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Up to this point, we show that |ρ1(Φq)| is a theoretically and practically suitable
random quantity for stratification of s. Then let us define the stratified estimator for
tr(K) as follows:

sst :=
K∑
i=1

1
Ni


Ni∑
j=1

|ρ1(φ(j))|∈Ci

|ρ(φ(j))|

P(|ρ1(Φq)| ∈ Ci). (4.2)

This concludes the methods that we propose to reduce the variance of the forest-
based trace estimators. In the next section, we give empirical comparisons of these
two approaches (control variate and stratified sampling) with the state-of-the-art
algorithms over various real-life graphs.

4.1.2 Empirical Results on Trace Estimation

This section is adapted from the results section of our paper [PABT22]. In these
results, we compare the forest-based trace estimators s, s̄, s̃ and sst with Hutchinson’s
estimator combined with several linear solvers.

Firstly, notice that all methods in this comparison are Monte Carlo methods. Recall
that the variance of a Monte Carlo estimator over N samples reads:

σ2
N ≈

σ2
1
N
,

where σ1 is the standard deviation over a single sample.1 We leverage this fact to
compare the effective runtimes of all methods i.e. the time needed to reach a fixed
relative error ε. First, we run all methods with N = 100. This gives us the average
runtime for the computation per sample and the sample variance σ̂2

N . Then, we
approximate σ̂1 =

√
Nσ̂N for each method. By using this approximation, we solve

ε = σ̂1
tr(K)

√
k

for ε = 0.002 to calculate the number of iterations k needed to reach ε
error. Finally, we calculate the effective runtime per method by multiplying k by the
average time for generating a single sample.

The linear solvers we use in Hutchinson’s estimator are Algebraic Multigrid (AMG) 2,
Conjugate Gradient (CG) 3, CG preconditioned with AMG and sparse Cholesky
decomposition using CHOLMOD [CDHR08]. Here we use the block implementation

1This is also true for the stratified sampling with the proportional allocation i.e. Ni ∝ P(|ρ′(Φq)| ∈ Ci)
for all i

2The implementation can be found in https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl
3The implementation can be found in https://docs.juliahub.com/KrylovMethods
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of CG given in [OLe80]. For the control variate methods, we choose α = q
q+davg for

s̄ and s̃. In stratified sampling, we divide the sample space into 5 strata C1, . . . , C5

verifying P(|ρ′(Φq)| ∈ Ck) ≈ 0.2 for all k = 1, . . . , 5. Here, we empirically choose the
number of strata so that P(|ρ′(Φq)| ∈ Ck)� 0. For too many strata, this probability
approaches zero and generating samples from each stratum take much more time.
For too few, the effect of the stratification diminishes. We use the proportional
allocation where we set Nk = NP(|ρ′(Φq)| ∈ Ck) per stratum k. The graphs4 we use
in this comparison can be listed as:

• K-random regular: A random regular graph with with n = 104 nodes and
m = 105 edges generated by K-random regular model with the parameter
k = 20,

• Barabasi-Albert: A random graph with n = 104 nodes and m = 99900 edges
generated from a Barabasi-Albert model with the parameter k = 10.

• Collab-CM: A collaboration network of n = 21363 nodes and m = 91342
edges. Each node is an author in Arxiv on condense matter physics and each
edge depicts their collaboration,

• Citation-HEP: A citation network with n = 34401 nodes and m = 420828
edges. Each node is a paper in Arxiv on high energy physics and there is an
edge whenever a paper is cited by another,

• 3D-Grid: A 3 dimensional grid graph with n = 125000 nodes and m = 375000,

• Amazon: A real-life network in Amazon with n = 262111 nodes and m =
899792 edges. Each node corresponds to a product and an edge between two
products indicates that both products are bought by the same clients.

Fig. 4.3 summarizes our comparisons on effective runtimes while we vary q so that
tr(K)/n varies approximately between 0.01 and 0.65.

In relatively small and sparse graphs, such as Collab-CM, the direct method (solving
via sparse Cholesky decomposition) gives the best performance which is closely
followed by RSF methods. When it comes to larger and denser graphs, the RSF
methods often provide the best performance or a comparable performance with the
state-of-the-art algorithms.

4The real-life data sets can be found in https://snap.stanford.edu/data/
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Fig. 4.3.: Effective Runtime vs tr(K)/n.

4.2 Estimators for Effective Resistances

In the second part of this chapter, effective resistances, another significant set of
graph quantities, will be the central object. They have important roles in many
applications, yet they are not easy to access in the case of large graphs. In the
following, after giving their formal definition and, certain properties, we focus on
the problem of efficiently computing them. In doing so, we revisit existing algorithms
and propose two forest-based estimators. We finish this section with the empirical
comparison of these algorithms.

4.2.1 A Crash Course on Effective Resistances

A distance metric, e.g. the geodesic distance (the length of the shortest path between
a pair of vertices), over the vertices of a graph describes the distance of each
pair of vertices on the graph. Such metrics have a vast number of applications in
network science. However, distance metrics may be defined in various ways [Sol11;
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RR15], and there is no definitive answer as to which one is the best. Depending
on the theory and the application that the metric is deployed (mostly the latter),
network analysts may favour one over others. The effective resistances are a distance
metric over vertices. Initially studied in electrical networks, the effective resistances
have many theoretical links with random walks and USTs [LP16]. Therefore,
they contain significant information related to the probabilistic and combinatorial
properties of the graph. Motivated by these facts and many others, they have been
used in many network science applications, including graph clustering [AALG17],
sparsification [SS11] and learning [SXGRS20]. In this section, we detail their
connections with USTs (and also RSFs) and give RSF-based methods for their
numerical computation.

Let us start with the formal definition of effective resistances:

Definition 4.2.1 (Effective Resistances). A resistor network with n nodes (con-
nection points of resistors) can be depicted by a graph G = (V, E , w) where each
edge is a resistor with a resistance value 1/w(i, j). The effective resistance Ri,j
is the reciprocal of the current induced when unit potential difference/voltage
is applied between i and j. It can be seen as the resistance measured between
node i and j. One can calculate Ri,j in terms of the entries of L†:

Ri,j = L†i,i + L†j,j − L†i,j − L†j,i.

The last algebraic identity takes its roots from the combination of Ohm’s law and
Kirchoff’s current law. In order to elaborate, let us denote the voltage at node i by vi
and the current at edge (i, j) by ci,j . Applying a unit voltage between i and j means
vi = 1 and vj = 0. Then, by the Ohm’s law, one has cx,y = w(x, y)(vx − vy) for any
pair (x, y) ∈ E . In a matrix form, this constraint can be summarized as:

CBuv = c. (4.3)

where Bu is the unweighted edge incidence matrix and C ∈ Rm×m is the diagonal
matrix which contains the edge weights in its diagonal entries. In addition, Kirchoff’s
current law indicates that the total current flow fx =

∑
y∈N (x) cx,y at every node

x 6= i, j equals to zero. The current flow fi at node i (or fj at node j) gives us the
effective conductance, which is the reciprocal of effective resistance between i and j.
Let us write the flow vector as f = 1

Ri,j (δi − δj) where δi = [I(i = j)]j∈V ∈ Rn. Then
one has:

f = B>u c = B>u CBuv = Lv
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Multiplying both sides with f>L†, one has:

f>L†f = f>
(

I− 1
n

J
)

v,

where J = 11> ∈ Rn×n. Also by Kirchoff’s current law fi = −fj as the total current
going in and out from the circuit must be the same. Then, one has f>1 = 0 and
f>v = 1

Ri,j (vi − vj) = 1
Ri,j :

1
R2
i,j

(L†i,i + L†j,j − L†i,j − L†j,i) = f>v = 1
Ri,j

Ri,j = L†i,i + L†j,j − L†i,j − L†j,i

Along with these algebraic descriptions, effective resistances also have probabilistic
properties. One well-known property, closely related to our work, connects effective
resistances with RSTs:

Theorem 4.2.1 (Edges in RSTs [Vis+13]). Given a graph G = (V, E , w), the
probability of having an edge (i, j) in the RST, T reads:

P((i, j) ∈ T ) = w(i, j)Ri,j .

Proof. The RST T is a projection DPP over E that verifies for all S ⊂ E:

P(S ∈ T ) = det(B(B>B)†B)S

Then writing the probability for a single edge e = (i, j) finishes the proof:

P(e ∈ T ) = det(B(B>B)†B)e = det(BL†B)e = w(e)(L†i,i+L†j,j−L†i,j−L†j,i) = w(e)Ri,j .

Due to all of these properties and the others omitted in this thesis, effective resis-
tances have been playing a central role in many applications of network science. On
the other hand, direct computation is demanding as it requires computing the entries
of L† which is expensive when the graph is large. Therefore, the state-of-the-art
algorithms are approximate methods that avoid this computation at the cost of
precision. In the following sections, we visit some of these algorithms and propose
two forest-based estimators for effective resistances.
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4.2.2 Computing Effective Resistances

In the case of large graphs, the existing algorithms to compute Ri,j ’s are randomized
approximate approaches. Each algorithm deploys different type of randomization
in order to leverage probabilistic properties of effective resistances or to optimize
a certain aspect of the algorithm. In the following, we list three algorithms and
highlight their strengths and weaknesses:

• Estimation by Spanning Trees [HAY16]: By Theorem 4.2.1, we already know
the direct link between RSTs and effective resistances. In [HAY16], the authors
use this link to give an unbiased estimator for Ri,j ’s for all (i, j) ∈ E . In a
nutshell, after sampling N spanning trees T1, . . . , TN by Wilson’s algorithm,
this estimator computes:

∀(i, j) ∈ E , Rsti,j := 1
N

N∑
k=1

I((i, j) ∈ Tk)
w(i, j) ,

where I is the indicator function. The unbiasedness is easy to check via
Theorem 4.2.1. By Hoeffding’s inequality, the authors give the number of
spanning trees to sample as N = log(2m/δ)

2ε2 to guarantee |Ri,j − Rsti,j | ≤ ε for
each (i, j) ∈ E with the probability at least 1− δ. However, this estimator is
restricted to estimate effective resistances only over the edges.

• Estimation by Random Projections [SS11]: This method suggests estimating
Ri,j for all pairs of (i, j) ∈ V by using efficient Laplacian solvers [ST04] and
Johnson-Lindenstrauss’ lemma [Joh84]. The estimator takes three main steps:

1. Sample a random matrix A ∈ Rk×m where k = O(logn/ε2) for some
error parameter ε > 0 and each Ai,j ∈ {−1/

√
k,−1/

√
k} is a normalized

Rademacher random variable.

2. Compute Y = AB.

3. For each row of Y, denoted by y>i , solve the linear system Lzi = yi to
compute Z = [z1| . . . |zk].

4. Finally, one can calculate the estimate Rrpi,j for any pair (i, j) ∈ V as:

Rrpi,j := ||Z(δi − δj)||22.

By the Johnson-Lindenstrauss lemma, this algorithm verifies:

∀(i, j) ∈ V, (1− ε)Ri,j ≤ Rrpi,j ≤ (1 + ε)Ri,j
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In [SS11], the authors propose to approximate the inversion at step 3 with
the algorithm proposed in [ST04]. This algorithm computes the estimates z̃i’s
such that each verifies ||z̃i − L†yi||L ≤ δ||L†yi||L for some δ > 0 at the time
complexity O(m logc n log(1/δ)) for some constant c > 1. Then Z̃ computed

with the error parameter δ ≤ ε
3

√
2(1−ε)wmin

(1+ε)n3wmax
5 verifies:

∀(i, j) ∈ V, (1− ε)2Ri,j ≤ R̃rpi,j ≤ (1 + ε)2Ri,j

where R̃rpi,j := ||Z̃(δi − δj)||22. The authors develop on these facts and give the
time complexity of computing Z̃, and so the whole algorithm, as Õ(m log r/ε2)
where r = wmax/wmin 6.

• Local Algorithms [PLYG21]: Closer to our work, the authors in [PLYG21]
leverage the links of effective resistances with random walks, Markov chains
and spanning trees. In turn, they propose a family of randomized algorithms
for estimating Ri,j ’s. Given a pair of nodes s and t, these algorithms estimate
Rs,t without needing the whole graph as the input. They operate locally around
the nodes s and t (e.g. they use random walks that start from node s and stop at
node t). For the detailed analysis of all of these algorithms, we refer the reader
to [PLYG21]. In the experiments, we implement two of these algorithms (the
most precise and the fastest) in order to compare them with the algorithms
proposed in this manuscript.

This finishes our revisit on the SOTA algorithms for estimating Ri,j ’s. We note that
all these algorithms are randomized, but they differ in their pros/cons. For example,
the estimator Rsti,j can approximate Ri,j only if (i, j) ∈ E whereas one can reach an
arbitrary Ri,j with i, j ∈ V via random projections and some of the local algorithms7.
In the following sections, we give the forest-based methods to estimate Ri,j ’s.

4.2.3 Estimating ER via 2-Rooted Forests

The first algorithm we propose is inspired by the following fact:

5wmax and wmin are maximum and minimum edge weights in the graph.
6The soft big-O notation Õ hides the term logc n
7In [PLYG21], the authors suggest using the local algorithms for a small number of vertex pairs
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Lemma 4.2.2 (Ri,j as a determinantal ratio [Bap10]). Given a graph G =
(V, E , w), one has:

∀i, j ∈ V, Ri,j =
det L−i,−j|−i,−j

det L−i|−i
=
∑
φ∈F{i,j} w(φ)∑
τ∈Ti w(τ)

where Ti is the set of all spanning trees rooted in i and F{i,j} is the set of all
spanning forests with exactly two disjoint trees rooted in i and j.

Proof. The second part of the identity is straight-forward by adapting Theo-
rems 2.1.2 and 2.1.3. Then we prove this lemma by showing that Ri,j equals
the ratio of these two determinants. In order to do so, we go back to electrical
networks. Assume we apply the unit voltage between the nodes i and j in order
to obtain the effective resistance Ri,j . Recall that, by Ohm’s law, one has the
relation cx,y = w(x, y)(vx − vy) between the currents cx,y and voltages vx, vy
at every edge (x, y). Moreover, by Kirchoff’s law, the total current flow fx at
every node x ∈ V\{i, j} is equal to 0. The current flow fi gives the effective
conductance 1

Ri,j . A matrix form [Bap10] (alternative to Eq. 4.3) to summarize
these constraints is:

Av = δi with A =


L−i,−j|:
δ>i
δ>j

 ∈ Rn×n

where δi = [I(i = j)]j∈V ∈ Rn. By solving this linear system, one computes the
voltages induced at every node via Cramer’s rule as:

∀k ∈ V \ {i, j}, vk =
(−1)i+k det L−i,−j|−k,−j

det L−i,−j|−i,−j
.

Then rewriting the flow at node i gives us:

fi =
∑

k∈N (i)
w(i, j)(vi − vk),

=
∑

k∈N (i)
w(i, j)

(
1−

(−1)i+k det L−i,−j|−k,−j
det L−i,−j|−i,−j

)
,

=
det L−i|−i

det L−i,−j|−i,−j
.

Recalling fi = (Ri,j)−1 finishes the proof.
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Corollary 4.2.3 (2-Rooted Forests and ERs). For any pair i, j ∈ V, one has:

P(ρ(Φq) = {i, j}||ρ(Φq)| = 2) ∝ Ri,j .

Proof. The proof is easy by multiplying and dividing the determinantal ratio
above by q2∑

φ∈F2 w(φ):

Ri,j =
∑
φ∈F2 w(φ)∑
τ∈Ti w(τ)

q2∑
φ∈F{i,j} w(φ)

q2∑
φ∈F2 w(φ) =

∑
φ∈F2 w(φ)∑
τ∈Ti w(τ) P(ρ(Φq) = {i, j}||ρ(Φq)| = 2).

The proportionality follows by realizing that
∑

φ∈F2
w(φ)∑

τ∈Ti
w(τ) is invariant w.r.t. i and

ja.

aRecall that ∀x, y ∈ V,
∑

τ∈Tx
w(τ) =

∑
τ∈Ty

w(τ)

Let us define the RSFs conditioned over |ρ(Φq)| as Φ(k)
q := Φq||ρ(Φq)| = k. and

consider a random variable Xi,j = I(ρ(Φ(2)
q ) = {i, j}). By the corollary above, we

have:
E[Xi,j ] = P(ρ(Φ(2)

q ) = {i, j}) ∝ Ri,j .

Then, one can estimate Ri,j with Xi,j up to a constant. Let X = [Xi,j ]i,j∈V be
the matrix form of this estimator. By definition, only non-zero entries of X are
Xi,j = Xj,i = 1 and the rest is equal to 0. In fact, this estimation can be improved by
deploying the conditional Monte Carlo technique used in 3.3.1. Recall Prop. 2.4.6
which states that the distribution of roots is uniform Φq when the partition is fixed.
Then an improved version of X with the conditional Monte Carlo method is:

∀i, j ∈ V, X̄i,j :=


1

|V
t(π(Φ(2)

q ,i)
||V

t(π(Φ(2)
q ,j)

| if rΦ(2)
q

(i) 6= rΦ(2)
q

(j)

0 otherwise
. (4.4)

The estimator X̄ admits the same expectation as X by the law of iterated expectation,
The matrix X for a given
spanning forest with two
trees.

and it gives a better estimation than X by the law of total variance. Alternatively, for
a 2-rooted spanning forests with two parts V1 and V2, one can write X̄ a low-rank
representation as:

X̄ = 1
|V1||V2|

(
1V11>V2 + 1V21>V1

)
, (4.5)
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where 1V1 = [I(i ∈ V1)]i and 1V2 = [I(i ∈ V2)]i. On the other hand, X̄i,j can estimate
Ri,j up to a graph related constant c, i.e. E[X̄] = cR where,

c =
∑
τ∈Ti w(τ)∑
φ∈F2 w(φ) .

We already know that this constant is invariant in i and j. In fact, c here can be
written in terms of the effective resistances as follows:

c =
∑
τ∈Ti w(τ)∑
φ∈F2 w(φ) =

∑
i,j∈V

∑
φ∈Fi,j w(φ)∑
τ∈Ti w(τ)

−1

=

∑
i,j∈V

Ri,j

−1

.

Indeed, this quantity is solely related to the graph itself. In fact, it is the reciprocal of
the Kirchoff’s index, that is often used to measure the stability of a network [EK13].
However, it is not easy to compute directly. In order to circumvent this issue, we
propose to use the following identity (Foster’s theorem [Fos49]):

∑
(i,j)∈E

w(i, j)Ri,j = n− 1.

As this identity holds for all graphs, an unbiased estimator for c is:

C =
∑

(i,j)∈E w(i, j)X̄i,j
n− 1

Then we define a ratio estimator as follows:

R2rf
i,j := X̄i,j

C
.

This estimator, like many other ratio estimators, is biased in most cases.

Bias analysis. The bias can be approximated by Taylor expansion on E[R2rf
i,j ] (at

second order of derivatives):

E[R2rf
i,j ]− Ri,j ≈ −

Cov(X̄i,j , C)
E[C]2 + E[X̄i,j ]

E[C]3 Var(C).

This bias usually diminishes at the rate of O(N−1) as N grows 8. Moreover, one
can correct the bias by estimating it from the samples by the sample covariance and
variance formulas and subtracting it from the estimate. Many recent works [BCG15;
MKJ19] propose various ways of improvement (including unbiased estimators),
taking extra computational time.

8Here, we compute the sample mean for X̄ and C separately from i.i.d. samples and compute the
ratio.

4.2 Estimators for Effective Resistances 111



Variance analysis. The variance of the estimator is the other main (usually the most
important) element of the approximation error of the proposed estimator. Similar to
the bias, it can be approximated by Taylor expansion as follows:

Var(R2rf
i,j ) ≈ Var(X̄i,j)

E[C]2 − 2E[X̄i,j ]
E[C]3 Cov(X̄i,j , C) + E[X̄i,j ]2

E[C]4 Var(C)

= 1
c2 (Var(X̄i,j)− 2Ri,j Cov(X̄i,j , C) + R2

i,j Var(C))
(4.6)

In order to better understand this variance expression, we derive an upper-bound
in terms of graph-related constants such as n, m, c or Ri,j . In doing so, instead
of an individual pair (i, j), we consider the sum of the variance over all pairs∑
i,j∈V Var(R2rf

i,j ) to get a global sense. As implied in Eq. 4.6,
∑
i,j∈V Var(R2rf

i,j )
consists of three additive terms. For each, we find the following upper-bounds (not
necessarily tight) for unweighted graphs:

•
∑
i,j∈V Var(X̄i,j) ≤ 2

n−1 − c
2∑

i,j R2
i,j ,

• −2
∑
i,j∈V Ri,j Cov(X̄i,j , C) ≤ 2c2∑

i,j R2
i,j ,

•
∑
i,j∈V R2

i,j Var(C) ≤
(

m2

(n−1)4 − c2
)∑

i,j∈V R2
i,j .

The derivations can be found in App. A.5. Putting all of these together yields that
the total variance is bounded:

∑
i,j∈V

Var(R2rf
i,j ) / 1

c2

 2
n− 1 +

[
m2

(n− 1)4

] ∑
i,j∈V

R2
i,j

 .
This bound indicates that for larger c = 1∑

i,j∈V Ri,j
, the total variance tends to

be smaller. This indicates that R2rf tends to perform better when the effective
resistances are small all over the graph.

Although R2rf estimates all pairs over a single forest, in practice it yields a poor
performance compared to other algorithms. In the following, we list several reasons
and possible solutions to improve the performance by going beyond the work done
in this thesis:

• Recycling forests with 1,3,4 trees. In order to sample X̄ and C, one needs to
sample spanning forests with exactly two trees for a fixed value of q. However,
for an arbitrary value of q, sampling a two-rooted forest might be a rare event.
In order to find the proper value of q, [ACGM18] suggests using an annealing
process. This process iteratively decreases the value of q until the desired
number of roots is approximately reached. However, even plugging this value,
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one might still end up with many forests with 1,3,4 trees which cannot be
used in X̄ and C. The up-down sampler given in [RTF18] may be a possible
fix for this issue. Originally designed for sampling uniform spanning trees, the
up-down sampler for RSFs takes a Markov chain whose states are the spanning
forests of the graph (or the spanning trees on the extended graph with Γ),
and stationary distribution is the distribution of Φq. There are three types of
transitions authorized between the states/forests; adding and deleting an edge,
adding an edge and deleting a root and finally adding a root and deleting
an edge. Setting the transition probabilities accordingly, one can guarantee
the stationary distribution is the same with the distribution of Φq. An MCMC
(Markov Chain Monte Carlo) algorithm to sample from the distribution of Φq

starts from an arbitrary state in this Markov chain and run a random walk.
After taking a sufficient number of steps, the random walk is stopped and the
current state is distributed similar to Φq. An alternative use of this random
walk may allow us to transform the spanning forests with 1,3,4 roots to the
spanning forests 2 roots. Instead of an arbitrary state, we start with a spanning
forest with 1,3,4 roots sampled via Wilson’s algorithm and do the random walk
until reaching a spanning forests with two trees. As we sample our initial state
from the stationary distribution, the final step we reach by the random walks is
also distributed according the stationary distribution. In this way, one recycles
the unused samples in computing X̄ and C. One of the main difficulties with
this idea is that one might need to take too many steps until reaching a two-
rooted forest depending on the graph. Also, one needs to implement complex
data structures to maintain transitions efficiently as proposed in [RTF18].

• Variance Reduction. High variance is the other main issue with this estimator.
One may attempt to solve this issue by variance reduction techniques with the
help of rich machinery of statistics in RSFs. A particular example that we come
up with is the adaptation of the control variate method. In this case, we use
the following relation [GX04] between L† and R:

L† = −1
2

(
R− 1

n
(RJ + JR) + 1

n2 JRJ
)
. (4.7)

Multiplying both sides by L, one has:(
I− 1

n
J
)

= −1
2

[
LR
(

I− 1
n

J
)]

.

By plugging R2rf instead of R, one can show that the expectation E
[
LR2rf

(
I− 1

nJ
)]

converges to a known matrix 2
(

1
nJ− I

)
. Thus one can use LR2rf

(
I− 1

nJ
)

as
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a control variate. Moreover, by the low-rank representation of X̄ in Eq. (4.5),
computing the matrix product LR2rf boils down to cheap matrix vector prod-
ucts.

At this moment, unfortunately, R2rf yields poor estimator. Besides its simplicity, its
main advantage is that given a spanning forest, it provides estimates for all pairs
of effective resistances. Nevertheless, its performance may be improved when the
suggested fixes above are applied which we keep as the future work. In the next
section, we give another estimator for effective resistances. In contrast to R2sf , this
one runs locally and gives an estimate for a single Ri,j at each run.

4.2.4 Estimating ER via Local Forests

In the proof of Lemma 4.2.3, we compute the effective conductance Ii,j = (Ri,j)−1

as follows:

Ii,j =
∑

k∈N (i)
w(i, k)

(
1−

(−1)i+k det L−i,−j|−k,−j
det L−i,−j|−i,−j

)
. (4.8)

A closer look on the determinant ratio gives us with Theorem 2.1.3 and Lemma A.4.1:

(−1)i+k det L−i,−j|−k,−j
det L−i,−j|−i,−j

=
∏
φ∈Fk→i,j w(φ)∏
φ∈Fi,j w(φ)

=
q2∏

φ∈Fk→i,j w(φ)
q2∏

φ∈Fi,j w(φ)

=
P(rΦq(k) = i)

P(ρ(Φq) = {i, j})
= P(rΦq(k) = i|ρ(Φq) = {i, j}).

where Fk→i,j is the set of forests with exactly two roots i and j and the node k 6= i, j

is rooted in i. Then, plugging this probability in Eq. 4.8 gives:

Ii,j =
∑

k∈N (i)
w(i, k)(1− P(rΦq(k) = i|ρ(Φq) = {i, j}))

=
∑

k∈N (i)
w(i, k)P(rΦq(k) = j|ρ(Φq) = {i, j})
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Let us denote the conditional random forest Φq|ρ(Φq) = {i, j} by Φ{i,j}. Then, an
unbiased estimator for Ii,j is:

Ĩi,j :=
∑

k∈N (i)
w(i, k)I(rΦ{i,j}(k) = j).

Based on this, we define a reciprocal estimator for Ri,j over N samples as follows:

Rlfi,j := N∑N
k=1 Ĩ(k)

i,j

.

The samples from Φ{i,j} can be generated by setting qi,j →∞ and the rest to zero
in Alg. 3. Moreover, one does not need to sample a complete spanning forest to
compute Ĩi,j . Whenever the nodes in N are rooted, one can compute Ĩi,j without
waiting all the nodes are rooted, hence the name. Therefore, in practice, we initiate
the LERWs in Alg. 3 from N (i) and interrupt it whenever all the nodes in N (i) are
rooted. We summarize this implementation for this estimator in Alg. 4.

Algorithm 4 EstimateERviaLocalForests
Inputs:
G = (V, E , w), {i, j} ∈ V,N

Initialize:
Ĩi,j ← 0
∀k ∈ V \ {i, j}, qk ← 0
qi = qj →∞

for i = 1 : N do
Run RandomForest on G by launching LERWs from N (i).
Interrupt the algorithm whenever all the nodes in N (i) are rooted, yielding a

forest φ (not necessarily spanning).
Ĩi,j ← Ĩi,j +

∑
k∈N (i)w(i, k)I(rφ(k) = j)

end for
return N/̃Ii,j .

Indeed, in this form, Rlf is a biased estimator as:

∀i, j ∈ V, E[Rlfi,j ] = E

 N∑N
k=1 Ĩ(k)

i,j

 6= N

E[
∑N
k=1 Ĩ(k)

i,j ]
.

The bias here can be approximated via Taylor expansion on E[Rlfi,j ]:

E[Rlfi,j ]− Ri,j ≈
1

E[̃Ii,j ]3
Var(̃Ii,j)
N
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By bounding Var(̃Ii,j) = E[̃I2i,j ]− E[̃Ii,j ]2 ≤ d2
i − I2i,j , one has a bounded bias:

E[Rlfi,j ]− Ri,j /
1

N I3i,j
(d2
i − I2i,j).

Moreover, the variance can be approximately bounded as follows: We complete
our theoretical analysis on Rlfi,j by noting its variance. The Taylor expansion on the
variance gives us:

Var(Rlfi,j) ≈
1
N

(
Var(̃Ii,j)

I4i,j

)
≤ 1
N

(
d2
i − I2i,j

I4i,j

)
.

Notice that the bias diminishes at the rate of O(N−1) compared to O(N−1/2) for the
standard deviation. Thus, this estimator converges to the true expectation Ri,j for
large N . Nevertheless, one can decrease or completely eliminate the bias by making
some extra effort. A simple correction is to estimate the bias term from the samples
via the sample mean and variance formulas and subtract it. If the time budget is
sufficient enough, one can deploy more advanced methods [MKJ19] that can provide
an unbiased estimation. Yet, in certain cases, they might increase the variance of
the estimator. In the experiments of the next section, we restrict ourselves to simple
bias correction for the sake of simplicity. Yet we finish this section by stressing that
there is still room for improvement.

4.2.5 Empirical Results on ER Estimation

In this section, we empirically compare the forest-based estimator Rlf with the
state-of-the-art algorithms in terms of approximation error and run-time. However,
a fair comparison is not straight-forward as some algorithms are more favorable for
estimating a small number of effective resistances while the others are dedicated to
estimate effective resistances in a global sense (over all edges or all pairs). Therefore,
we first divide the compared algorithms into two groups called local and global. The
local algorithms run on a small portion of the graph and estimate efficiently Ri,j for
a given pair (i, j). In this group, we have algorithms 1 and 4 in [PLYG21], namely
EstEff-TranProb (TP) and EstEff-MC2 (MC2), and the estimation via local forests
(LF) of Section 4.2.4. The global algorithms approximate the effective resistances
over all edges or all pairs by operating over the whole graph. The run-time of
these algorithms does not depend on the number of effective resistances demanded.
Therefore, the number of estimated effective resistances grows, these algorithms
become more favorable compared to the local algorithms. In this group, we put
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the spanning tree algorithm by [HAY16] (ST) and the random projection algorithm
by [SS11] (RP).

Notice that all algorithms in this comparison are Monte Carlo algorithms and each
has a parameter that adjusts the number of Monte Carlo trials. For global algorithms
ST and RP, these parameters are respectively the number of sampled spanning trees
Nst and the dimension of the projection space k. We start our experimentation
by estimating effective resistances via these algorithms over all edges. In doing
so, we vary the parameters Nst and k and measure the total run-time and the
average relative error 1

m

∑
(i,j)∈E |R′i,j −Ri,j |/Ri,j of the algorithms. This gives us the

performance of the global algorithms in estimating a single effective resistance. For
the local algorithms TP, MC2 and LF, we run them over 30 randomly selected edges
(with replacement) in order to estimate the corresponding effective resistances.
Finally, we compute their average relative error and the average run-time over the
edges in order to deliver their performance over a single effective resistance. Their
parameters are tuned for each edge as follows; we first run LF for 40 local forests,
then we tune the parameter l in TP and ε in MC2 in order to reach the relative
error given by LF. This allows us to compare the run-times of local algorithms
for the approximately same relative error. In order to compare them with the
global algorithms, we calculate a number called threshold number Nth. This is the
maximum number of effective resistances that can be estimated by a local algorithm
before reaching the run-time of the fastest global algorithm at the same relative
error. By looking at this metric, one can answer the following question; For how
many effective resistances, the local algorithms are more useful than the global ones?
As a result, the larger this metric for a local algorithm the better the performance.

In Fig. 4.4, we present our results over 4 benchmark datasets which are listed as:

• Citeseer: A citation network with n = 2110 nodes and m = 3668 and edges,

• Cora: A citation network with n = 2485 nodes and m = 5069 edges,

• Pubmed: A citation network with n = 19717 nodes and m = 44324 edges,

• Collab-CM: A collaboration network with n = 21363 and m = 91342.

First of all, we observe that over all graphs, ST provides the best performance
within global algorithms in estimating effective resistances over all edges. Note
that both methods inherently benefit from the sparsity of the graph. In case of RP,
the sparse approximate Cholesky decomposition exploits the sparsity to facilitate
its intermediate operations. For ST, Wilson’s algorithm generates spanning trees
by taking much less time in sparse graphs. The difference we observe in these
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Fig. 4.4.: Relative error vs. runtime of the global (ST and RP) and local (LF, TP, MC2)
algorithms for estimating effective resistances. For the global algorithms, we run
them by varying their iteration parameter and measure their average relative error
over all edges and total run-time. For the local algorithms, we measure their average
relative error and run-time for a single edge which is given in their plots as the leftest
marker. We compute the time taken by each local algorithms for estimating k effective
resistances by multiplying their run-time for a single estimation by k. By varying k
between 1 and m, we generate the points in the plots of the local algorithms.
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simulations is probably due to the low variance of ST for estimating large effective
resistances. One can observe this on the extreme case. In this case, we estimate
an effective resistance Ri,j where i and j is connected only by a single edge. By
definition, we find the true value of Ri,j as 1. Also, the estimation by ST always equals
to 1 as this edge has to appear in all spanning trees. Therefore, it has zero variance.
On the other hand, this is not necessarily the case for RP as the randomization we
use here is independent from the graph. Therefore, the estimation given by RP still
might have variance around the true value of Ri,j . We see that there are many edges
that fit this description on these graphs and thus we observe a significant difference
between ST and RP. However, one needs to keep in mind that ST is not defined for
the pairs (i, j) 6∈ E whereas RP can estimate those effective resistances.

Secondly, all local algorithms are usually more efficient compared to the global
ones for estimating a single effective resistances. However, in the global sense, they
cannot provide the same efficiency. Thus, we report their threshold numbers Nth in
order to say up to how many edges they are still useful. By looking at the estimation
over a single edge and the threshold numbers, we see that the forest-based algorithm
LF often gives the best performance. Compared to other local algorithms TP and
MC2, it takes much less time for the same relative error over a single estimation,
and it gives a threshold number that is at least 4-5 times that of the closest local
algorithm. As a result, LF gives a way to estimate approximately 0.5 − 2% of the
effective resistance over all edges without being slower than the global algorithms.

4.3 Graph Filtering with RSFs

Graph signal filtering is an essential tool in GSP. However, the necessary compu-
tations, such as computing the graph Fourier basis U by diagonalizing the graph
Laplacian L = UΛU>, are not scalable with the size of the graph. The RSF estimators
x̃, x̄ and z̄ avoid the heavy computations for approximating a particular graph
filtering where the transfer function is:

gq(λ) = q

q + λ
(4.9)

where λ is the graph frequency parameter. Indeed filtering with gq(λ) is a very
useful operation as it returns a smooth signal on the graph. Yet depending on the
application, different transfer functions might be desired. For example, the ideal
low-pass filters are more favorable if the noise is known to be contained in the high
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frequency components. In these filters, the transfer function takes the following
form:

gk(λ) =

1, if λ ≤ λk
0, otherwise

(4.10)

where λk is the k-th smallest eigenvalue of L.

When applied, this filter completely removes the components associated with the
frequencies λ > λk from the signal. If the noise is known to be contained in
those frequency components, one can perfectly reconstruct the original signal. The
step function behaviour of gk(λ) is desired in many applications. In our case, we
may try to approximate gk(λ) by gq(λ) with the forest estimators by optimizing
q such that gq(λ) gives the greatest decrease at λk. Even so, gq(λ) is a very poor
approximation.

In this section, we focus on the graph filtering other than gq(λ) that can be ap-
proximated by the forest-based estimators. In doing so, we first give a forest-based
method to solve the Laplacian systems in the form of Lx = y which corresponds
to low-pass filtering. Then, we switch our focus to another setup where we find a
family of graph filters estimated by RSFs. In this setup, we duplicate the graph and
add edges between the nodes of the original and copy graph. For certain ways of
creating such graphs, the RSF methods yield a set of graph filters different from
gq(λ). Instead of a single hyper-parameter as in gq(λ), these filters come with four
parameters, yielding wider options for filtering. We illustrate them in a case study
where we approximate some of the typical graph filters gk(λ) or,

gq,p(λ) = q

q + λp
, (4.11)

where p > 1 is an integer.

4.3.1 Solving Lx = y with RSFs

Linear systems of the form Lx = y where L is a graph Laplacian are an important
class of systems of linear equations. Apart from their direct use in electrical networks,
they also appear in the spring networks and maximum flow problems [Vis+13]. It
is possible to see the solution x = L†y as a graph filter where the transfer function
is:

g†(λ) =

0 λ = 0
1
λ otherwise

.
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Fig. 4.5.: An illustration of the averaging operation in x2rf . After averaged in one tree, the
signal is propagated in the other tree.

Yet again, directly computing x (O(n3)) is not practical for very large graphs. In
order to avoid this, one can use classical methods for solving linear systems, such
as iterative methods. The state-of-the-art algorithms solve the Laplacian systems in
quasi-linear time in the number of edges, more specifically O(m logc n log 1

ε ) where
c is a constant and ε is the error parameter [ST04]. In this section, we show how
RSFs can be leveraged for approximating L†y. However, the resulting method at its
current state is not competitive with SOTA algorithms.

The forest estimator we find for L†y in fact, takes its root from the following relation
between L† and the effective resistance matrix R:

L† = −1
2

(
R− 1

n
(RJ + JR) + 1

n2 (JRJ)
)
, (4.12)

where J = 11> ∈ Rn×n. Then, whenever one has an estimate R̃ of R, the product
L†y can be approximated by matrix-vector products with R̃. Interestingly, the forest
estimator R2rf may provide such products very cheaply. By definition R2rf is a
symmetric matrix with two non-zero blocks in its off-diagonals. Then, the product
x2rf := (R2rfy) with an arbitrary vector y reads:

∀i ∈ V, x2rf
i =


∑

j∈V yjI(rΦq (i)6=rΦq (j))
C|Vt(Φq,r1)||Vt(Φq,r2)|

if ρ(Φq) = {r1, r2}

0 otherwise

where r1 and r2 are the random roots of Φq. In other words, given a forest φ with
two roots, it computes a scaled average of y within the tree that i does not belong
to, and propagates it through the tree of i (See Fig. 4.5). Assuming 1>y = 0 without
loss of generality9 and rearranging on Eq. (4.12) allows us to define the estimator
for L†y as follows:

l := −1
2

(
I− 1

n
J
)

x2rf .

In practice, this estimator computes x2rf , removes its mean and scales the result
by −1/2. This ensures that the estimates given by l are zero-mean vectors similar
to L†y. As defined above, the random vector x2rf takes a two-tree spanning forest

9Note that L†(y + µ1) = L†y for any µ ∈ R. We choose to assume y is zero-mean.
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and computes the averages within each tree. Unlike the previous estimator x̄, it
swaps the scaled averages between trees and then propagates. At first sight, the
swapping operation might seem counter-intuitive as we do not have such behaviour
in the estimated product L†y. In fact, this situation can be explained by examining
the overall process. First, notice that for 1>y = 0, the scaled averages computed in
two trees ȳ1 and ȳ2 verify ȳ1 = −ȳ2. Then, swapping the scaled averages across the
trees corresponds to changing only the signs of the values that are propagated. Later
on, in calculating l, we multiply x2rf by −1

2 , which reverts the sign change that is
induced by the swapping.

The intrinsic weakness of this estimator is due to the high variance of R2rf . Due
to this fact, we do not expect a good performance in estimating L†y. Nevertheless,
one may improve this estimator by improving the performance of R2rf by taking our
suggestions in Section 4.2.3.

4.3.2 Filters on the Duplicated Graph

Let us start by describing how we duplicate the graph. Given the adjacency matrix
W of a graph, the duplicated graph Gd admits the following adjacency matrix:

Wd =
[

W Wb

Wb W

]
,

where Wb ∈ Rn×n contains non-negative edge weights. In other words, in order to

A
B

C
D

A’
B’

C’
D’

We copy the graph and
add edges between the
nodes of the original and
copy graph

form the duplicated graph Gd, we duplicate G and create edges between the nodes
of the original and copy graph where the weights of these edges are contained in Wb.
Indeed the options for Wb are limitless. Here we restrict ourselves to (entry-wise)
non-negative matrices that are matrix functions evaluated at L i.e. Wb = h(L) :=
Uh(Λ)U> for some function h : R→ R. In turn, we ensure that every block of Ld is
diagonalizable by U. This constraint seems a bit technical, but it allows us to keep U
as the Fourier basis in the analysis of the RSF filters proposed in the following.

Let us delve into the filtering properties on Gd. In order to do so, we first write the
corresponding graph Laplacian Ld. By observing h(L)1 = h(0), we can simplify Ld
to the following block matrix form:

Ld = Dd −Wd =
[
h(0)I + D 0

0 h(0)I + D

]
−
[

W h(L)
h(L) W

]
=
[
h(0)I + L −h(L)
−h(L) h(0)I + L

]
.
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Given this graph, let us take a look at the filtering induced by the Tikhonov regular-
ization, which computes the smooth signal as:

x̂ = q(L + qI)−1y.

First of all, Gd contains 2n nodes thus 2n measurements y1, . . . , y2n. Therefore, we
need to clarify the definition of the measurements vector. A natural choice is to
duplicate the original measurements. In order to explore more graph filters on Gd,

we define a parametrized duplication as yd =
[
αy
βy

]
. Similarly, instead of using

the same value of q in both the original and copy graph, we give the flexibility of
choosing different values q1 and q2 so that we can explore the full potential of the
new set of filters. Under this parametrization, the corresponding kernel Kd becomes:

Kd = (Ld + Qd)−1Qd =
[
(h(0) + q1)I + L −h(L)

−h(L) (h(0) + q2)I + L

]−1 [
q1I 0
0 q2I

]

=
[
q1M2S q2h(L)S
q1h(L)S q2M1S

]
=
[

K1 K2

K3 K4

] (4.13)

where M1,2 = (h(0) + q1,2)I + L and S = (M1M2 − h2(L))−1. Then, the product with
yd gives:

Kdyd =
[
(αK1 + βK2)y
(αK3 + βK4)y

]
.

Notice that all K1,2,3,4 commutes with L thanks to our initial constraint. Then, we
can derive the transfer function of the filtering implemented by (αK1 + βK2)y as
follows:

fθ(λ) = αq1(λ+ h(0) + q2) + βq2(h(λ))
(λ+ h(0) + q1)(λ+ h(0) + q2)− h(λ)2 , (4.14)

where we collect the hyper-parameters into θ = (q1, q2, α, β). This transfer function
with four hyper-parameters gives us a big family of filters, and all of these filters
can be approximated by the unbiased estimators x̃, x̄ and z̄. On top of the hyper-
parameters, a significant design choice is the selection of the matrix function h.
Unlike θ, we are not completely free on the choice of h as it needs to verify that h(L)
is a non-negative matrix. Some simple examples are:

• h(L) = dI for some d > 0,

• h(L) = (dmaxI− L)p for some positive integer p,

• h(L) = Ue−ΛU>.
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The functions that map the graph Laplacian to non-negative matrices have been
analyzed in several works by [BCN05; BH08; MW79]. In fact, these works consider
a more general class of matrices, called M -matrices, instead of the Laplacian. The
M -matrices are defined as the real matrices which contain only non-positive values
in the off-diagonal entries. As a result, all graph Laplacians are also M -matrices.
Then the following theorem gives us a necessary condition for the function h to
build h(L) = Wb.

Theorem 4.3.1 (Necessary condition for h [BCN05]). Let h : R+ ∪ {0} → R be
analytic function. The function h maps M -matrices to non-negative matrices only
if h verifies for all i = 1, 2, . . . and for x ∈ (0,∞):

(−1)ih(i)(x) ≥ 0,

in other words, h is completely monotonic.

Proof. We refer the reader to the proof of Theorem 2.1 in [BCN05].

Thanks to this necessary condition, we can check the feasibility of a candidate
function for building Gd.

Overall, we define here a filtering scheme on an altered version of the graph. The
way we alter the graph allows us to keep the same graph Fourier basis with the
filtering schemes on the original graph. Further analysis give us a wide set of transfer
functions that can be obtained from this new filtering scheme. Most importantly,
all of these filters can be approximated by the RSF-based estimators. This fact
opens many possible use cases for the forest estimators beyond approximating gq(λ).
The following case study is dedicated to illustrate these filters. In this illustration,
we empirically show that there exist feasible parameter set θ that allows us to
approximate the ideal low-pass filter gk(λ) or the (p-q)-rational filter gp,q(λ) = q

q+λp

better than gq(λ) .

Low-pass Forest Filters

Filtering a signal by low-pass filters without diagonalizing L is usually desired
in GSP [RWS20]. In approximating such filters, one can deploy approxi-
mate approaches such as Chebyshev polynomials [SVF11] or graph ARMA
filters [ILSL16] yielding state-of-the-art performance. Here we look at a dif-

124 Chapter 4 RSF Estimation of Some Important Graph Quantities



ferent perspective on approximating low-pass filters. Since the signals filtered
by gq and fθ can be cheaply estimated by RSF-based estimators without any
bias, in this example, we aim to explore the potential of approximating two
particular low-pass filters gk(λ) and gp,q(λ).
First, let us fix some notation. In a more general sense, we consider a target
transfer function g?(λ) and try to approximate g?(λ) with a candidate function
cΘ(λ) with a parameter set Θ. As a result, we look for filter parameters Θ?

such that:

Θ? = argmin
Θ

n∑
i=1

(g?(λi)− cΘ(λi))2 + µ||cΘ(0)− 1||22,

over the graph frequencies λi’sa and µ||cΘ(0)− 1||22 is the regularization term
that enforces that the estimated filter equals to 1 at λ = 0 similar to the
target filters. Under this generic setup, we consider gk(λ) or gp,q(λ) as the
target function, and gq(λ) or fθ(λ) as the candidate function. In both options
of cΘ(λ), here we have a constrained optimization problem as we need to
ensure q > 0 for gq(λ) or q1,2 > 0 for fθ(λ). On the other hand, this type of
approximation for the target functions is quite appealing as we only need to
solve an optimization problem with a few parameters. In the case of gq(λ)
being the candidate function, one can find a global minimizer solving the
corresponding single variable polynomial under the constraint q > 0. Indeed
a similar analysis should be done for fθ(λ), which comes in a much more
complicated form. In this case study, we prefer to avoid this type of analysis
and empirically show that fθ(λ) may provide a better approximation for
the target functions even if the parameter set θ is a local minimizer. In the
following, we illustrate this idea on a 3D-Grid graph with 1000 nodes and
3000 edges.
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Fig. 4.6.: We approximate two target filters gk(λ) and gp,q(λ) via gq and fΘ. For
fΘ, we choose h(L) = dmaxI − L. Then we optimize the parameters of
the candidate filters gq and fΘ for estimating the filters gk=200(λ) and
gp=2,q=10(λ). In the first figure, we find the parameter q = 2.14 for gq and
Θ = (0.61, 1.70, 8.02, 18.16) for fΘ. As you can see fΘ yields much more
approximate filter when these parameters plugged compared to that of gq.
The similar results are also observed in the case of approximating gk=200(λ).
The filter with four parameter fΘ where Θ = (0.25, 2.93, 10.80, 13.88) have
more flexibility compared to gq=1.63, thus it yields a better approximation.

aIn practice, this can be replaced by the estimation of the spectrum as it is expensive to
calculate all the eigenvalues

4.4 Conclusion

In this section, we present the forest-based algorithms to approximate three im-
portant graph quantities, namely the trace of the regularized inverse of the graph
Laplacian, the effective resistances and various graph filters. Firstly, the proposed
methods for the trace estimation problem in Section 4.1.1 are the improved versions
of the forest estimator introduced in [BTGAA19]. Although these improvements
take their root from the existing variance reduction methods [Owe13] (control
variate method and stratified sampling), it is not evident how to apply them on an
arbitrary estimator as they require additional statistics. Our contribution here is to
provide such statistics so that these variance reduction techniques can be adapted to
improve estimation performance. In turn, we observe that the proposed methods
reach the SOTA performance over various graph datasets. In estimating effective
resistances, we propose two novel algorithms, which are local and global estimators.
Our analysis shows that the global algorithm we propose has interesting properties
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but has poor estimation performance. On the other hand, the local algorithm yields
simple implementation and comparable performance with the SOTA algorithms
as observed in Section 4.1.2. Finally, we show that the graph filters that can be
approximated via RSFs are not limited to q

q+λ . In doing so, we first show that L†y is
another filtering operation that can be estimated via RSFs, in particular 2-rooted
random forests. Then, we slightly modify the graph by extending the filters that
can be obtained RSFs. In this modification, we duplicate the graph by keeping the
original edges and connecting the nodes in the original and copy graphs. In turn,
this gives a family of filters parametrized by four parameters. Finally, we illustrate
this filter in approximating certain graph filters such as gk and gq,p.
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Conclusion 5
„The song is ended but the melody lingers on...

— Irving Berlin

The graph Laplacian is at the heart of many applications involving graph-structured
data. Given their extensive use, many numerical algebra tools (deterministic or ran-
domized) have been adapted for dealing with the graph Laplacian. In this thesis, we
give a brand new set of techniques for randomized Laplacian-based algebra. These
techniques cover a wide variety of problems, including graph Tikhonov regulariza-
tion, interpolation, node classification, graph `1-regularization, trace estimation of
the regularized inverse of L, estimation of the effective resistances and graph signal
filtering. Although these problems seem entirely unrelated, their solutions are closely
linked with random spanning forests. Some already known and others uncovered
through the thesis, these links have been the supporting pillars of the techniques pro-
posed through this thesis. They take their root in the connections between various
concepts, namely graph theory, determinantal point processes and randomized linear
algebra. Therefore, we started by giving the necessary background on these concepts
and also random spanning forests by emphasizing their connections with RSFs.
Then, we presented our randomized methods for the problems in Laplacian-based
numerical algebra. For each method, we provided a bias-variance analysis, and we
compared them with the existing algorithms over various real datasets whenever
possible.

Limitations, Open Questions and Perspectives

In this section, we will discuss each proposed method of this thesis by pointing
out its strengths and weaknesses while highlighting associated open questions and
future directions.

In Chapter 3, we present a unifying framework in Prob. (3.1.1) for Tikhonov regu-
larization and interpolation on graph signals. While the former draws a regularized
unconstrained optimization problem, the latter dictates the value of the signal at
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certain nodes. With the help of the node-wise hyperparametrization (defining qi per
node i), we show that both cases can be understood as an instance of Prob. (3.1.1).
Besides the wide variety of applications, from graph signal filtering to electrical
resistor networks, the explicit solution to the unified problem can be found in a
closed-form expression. One of our contributions in this chapter is the forest-based
estimator x̃ for approximating this solution x̂ for all cases. In a nutshell, this esti-Given a graph and

signal...

the unbiased estimator
x̄ operates as follows:

mator samples rooted spanning forests and propagates the signal value at the root
within each tree. As simple as it is, the bias-variance analysis shows it has no bias
and a tractable variance in terms of the input signal and the Laplacian. Moreover,
it is possible to apply variance reduction techniques to reduce its expected error
significantly. This brings us to the other contributions of Chapter 3. Thanks to the
rich theory of RSFs and existing algorithms, we manage to adapt two variance re-
duction techniques, namely conditional expectation and the control variate method.
We obtain new estimators with no bias and reduced variance in both cases.

On the other hand, the existing algorithms, namely preconditioned conjugate gradi-
ent descent and Chebyshev polynomial approximation, to compute x̂ are determinis-
tic algorithms with a high convergence rate. Specific to inverting Laplacian systems,
one can find more sophisticated preconditioning methods for iterative methods
based on spanning trees or graph sparsification [Vis+13]. In turn, they speed up
the convergence of the algorithm, yielding nearly linear time algorithm with m. In
contrast, the proposed methods are subjected to the Monte Carlo convergence rate
O(N−1/2) i.e. in order to divide the squared error ||x̃− x̂||22 by 2, one needs to double
the sample size. Over various graph datasets in Section 3.3.3, we observe that this
rate remains slow compared to the convergence of the deterministic methods. Yet
again, in many applications, the exact solution x̂ itself is an inaccurate quantity. For
example, in a signal denoising setup, the noise-free signal differs from x̂ by some
error. Keeping this in mind, we also measure the denoising performance of our
estimators and see that they are comparable with state-of-the-art algorithms.

Indeed, the slower convergence rate is the principal issue of forest-based estimators.
On top of this, certain compiler and hardware optimizations give the deterministic
methods an advantage, while these are not yet available for the RSF estimators.
The deterministic methods access the graph Laplacian L only by the matrix-vector
products. These operations are well-optimized in the compilation by considering
run-time performance and memory accesses. In the case of forest-based estimators,
one needs to run loop-erased-random-walks over the graph, which access the en-
tries of L in arbitrary indices. This brings an additional cost to pull the random
parts of L into the computer’s cache memory. Given the architecture of today’s
computers, this cost is inevitable. However, one may still look for speeding up in
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Wilson’s algorithm itself. In fact, this has been an open research question during
the last decades, and many have attempted to propose a faster algorithm than
Wilson’s for sampling uniform spanning trees. Many attempts in this field yielded
approximate algorithms i.e. samples a spanning tree from approximately uniform
distribution [KM09; MST14; Sch18; ALGVV21]. While some use the links of USTs
with the graph Laplacian, some others choose MCMC methods to approximate the
distribution of UST with certain theoretical guarantees. Although these methods
are theoretically appealing, they require implementing either an algebraic tool or
a specific data structure which makes the implementation complicated. On the
other hand, Wilson’s algorithm is very easy to implement as it is presented in Alg. 2.
The most time-consuming step in Wilson’s algorithm is usually the first LERW that
only terminates at a single node which is the given root (Γ for the forests). As no
other path is already sampled, the first LERW might take a lot of time to visit a
lot of nodes before its termination. On the other hand, the last LERWs terminate
very quickly as they may stop at many nodes. Recently, [NIF22] states that the
algorithm by Aldous [Ald90] and Broder [Bro89], which was the fastest algorithm
before Wilson’s algorithm, has the exact opposite behaviour. Based on this fact,
the authors in [NIF22] suggest a hybrid framework that deploys Aldous-Broder’s
algorithm at the initial steps and launches Wilson’s algorithm later on to complete
the spanning tree. They show that for certain graphs, this procedure still samples a
UST faster than both algorithms. However, at its current stage, it is not generalized
to general graphs. Overall, Wilson’s algorithm remains the current best option for
our estimators.

In Chapter 4, we focus on the RSF estimation of other graph quantities, which are
the trace of the regularized inverse of Laplacian, effective resistances and various
graph filters. Each quantity appears as the solution to a problem involving the graph
Laplacian. Firstly, the trace tr(q(L + qI)−1) is often required in the hyper-parameter
selection algorithms in order to tune the hyper-parameter q in GTR. The existing
algorithms usually estimate it via Monte Carlo simulations, such as Hutchinson’s
estimator [Hut89] and the number of roots in RSFs [BTGAA19]. We work on the
RSF-based algorithm, the number of roots s, to improve it with variance reduction
methods. In doing so, we adapt two variance reduction algorithms, namely control
variate and stratified sampling, for reducing the variance of s yielding the best, or at
least comparable, results with the state-of-the-art algorithms. In adapting control
variate method, we follow a very similar procedure while we transform the estimator
x̄ (resp. x̃) into z̄ (resp. z̃). In turn, one only needs to track the edges connecting
two nodes belong to different trees for computing the control variate. To implement
this, we only add a few lines in Wilson’s algorithm, and we observe in empirical tests
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S =

S(1) S(2) S(3) S(4) S(5) S(6) S(7)


2 7 6 1 Γ Γ 1
Γ 7 2 5 4 4 2
3 7 1 5 1 4 1

...

(a) The stacks

1

2 3

45

67

(b) Graph at the first
layer

1

2 3

45

67

(c) Graph at the sec-
ond layer

Fig. 5.1.: An example of the stack representation (left) and the induced graphs from the first
and the second layer. Blue nodes are the current root set.

that this is a cheap price to pay given the variance reduction provided. However,
our implementation gives a naive way of tracking edges at the boundaries. An open
question is whether there exist faster algorithms or, more probably, data structures
that allow us to track these edges without traversing all the edges. A possible
direction might be to implement link-cut trees as done in [RTF18] in order to track
the edges of interest meanwhile generating the spanning forest. The second variance
reduction method we adapt is stratified sampling. We divide the outcome space of
s = |ρ(Φq)| by using a random quantity |ρ1(Φq)| (the number of roots sampled at the
first visit of LERWs in Wilson’s algorithm) while collecting samples. This quantity has
a tractable probability distribution (Poisson-Binomial) and it is easy to sample from.
Therefore, we choose to use the stratification variable to decrease the variance of s.
In turn, the new estimator competes and even outperforms the existing algorithms.
Indeed, one may achieve even better performances by combining these two methods
by going beyond this work.

Another interpretation of the random set ρ1(Φq) comes from the stack representation
of Wilson’s algorithm (See also Fig. 5.1). We consider infinite stacks at each node.
At every layer k of a stack S(i)

k associated with node i, one has a random neighbor
j with a probability w(i,j)

q+di and with probability of q
q+di , the node i becomes a root.

Then, we form a graph by looking at the top element of each layer. Typically, such
a graph contain cycles in it. A cycle-popping algorithm removes the edges of the
cycles from the corresponding stacks by updating their top elements. Surprisingly,
Wilson’s algorithm (for forests) is an implementation of a cycle popping algorithm
that runs until there is no cycle remaining. The resulting structure is a spanning
forest. When we look at the root set of the spanning forest, we see that it evolves
through this process until termination. While some roots are sampled in the first
layer of the stacks, some others become a root in the continuation of the cycle
popping procedure. In fact, ρ1(Φq) is the roots sampled at the first layer, and this
definition can be generalized to ρk(Φq) which are the roots sampled until k-th layer.
Interestingly, we see that for k = 1, ρ1(Φq) is a DPP with a diagonal marginal kernel
K1 = q(qI + D)−1. Similarly as k goes to infinity, one recovers the original root set
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ρ(Φq) with the marginal kernel Kk→∞ = K = q(qI + L)−1. Then, the natural question
is that what happens in between? We wonder whether ρk(Φq) is still a DPP for some
k > 1, or the only cases where the DPPs appear is k = 1 and k →∞. If the former is
true, what are their marginal kernels? These questions remain unanswered in this
thesis, but one might start to investigate by attempting to write the distributions of
these objects by using the distributions of the underlying LERWs.

We also propose two RSF-based estimators for approximating effective resistances
without explicitly computing L†. Both rely on the close connections between two
rooted spanning forests and effective resistances. In one, we compute the effective
resistances in a global sense (over all pairs of nodes), while the other runs in a
much smaller portion of the graph to estimate a single effective resistance. The
bias-variance analysis shows that both estimators are biased. Nevertheless, the
bias decays much faster than the variance as the sample size increases, leaving
the variance as the main source of the approximation error. In initial tests, we
observe the global estimator we propose has poor performance. However, it can
provide an estimate over all pairs of effective resistances for a single sample of two
rooted spanning forests. In its variance analysis, we see that the variance is inversely
proportional with c2 where c = (

∑
i,j∈V Ri,j)−1. For large graphs, c2 is typically a

small number yielding a large variance in our estimator. Yet again, one might find
improvements via recycling unused forests that are not with two roots or control
variate suggested in Section 4.2.3. Although it gives poor estimation, it gives cheap
matrix-vector products. In turn, one can estimate L†y for an arbitrary vector y at
very cheap cost as described in Section 4.3.1.

The local estimator on the other hand gives a good estimation performance and
is comparable with state-of-the-art algorithms. It usually outperforms other ex-
isting local algorithms in the maximum number of effective resistances that can
be estimated before reaching the best global algorithm. In this algorithm, we set
node i and j as roots of estimating Ri,j , and we launch LERWs at the neighbours
of i. We stop the algorithm when all neighbours of i are rooted. In this way, the
algorithm produces an estimate without generating a complete spanning forest of
the graph. As aforementioned, the first LERW again take the most of the run-time.
An interesting modification might be an early stop strategy in which we stop the
first LERW after reaching a certain number of steps, which introduces an additional
bias in our estimation. Indeed, an open question is if this version of the algorithm
yields a substantial run-time gain without significantly increasing the expected error
of the estimator. One might start to analyze the bias by deriving the distribution of
the interrupted LERWs, which might not necessarily appear in determinantal ratios
as in the distributions of the original laws.
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Later, we give a set of graph filters that RSFs can approximate. In this set, we have
three types of graph filters whose transfer functions are gq(λ) (the graph filter in
GTR), g†(λ) (the filter by the pseudo-inverse of Laplacian) and fΘ(λ) (the filter
obtained by duplicating the graph). As mentioned before, g†(λ) or solving Laplacian
linear systems is at the reach of the RSF-based estimators thanks to our global forest-
based estimator for effective resistances. The implementation is simple and efficient,
but the high variance of the global estimator is also the biggest issue for estimating
g†(λ). Therefore, we suggest using this estimator after applying the improvements
in Section 4.2.3. This leaves us with the parametric filters gq(λ) and fθ(λ). By
duplicating the graph and solving a version of graph Tikhonov regularization on the
duplicated graph, we obtain a new set filter fθ(λ). Indeed, this filter is also within
reach of the RSF-based estimators. Moreover, it is parametrized by four parameters
instead of a single one q, which provides a much wider range of filters. We illustrate
this extended range in approximating popular graph filters such as the ideal low-pass
filters or gq,p>1(λ) = q

q+λp and observe that the duplicated graph filter fθ(λ) may
provide better approximations than gq(λ) with the help of more parameters. Given
this increased capability, one might ask; What happens if we copy the graph more than
twice? In this case, one would obtain more degree of freedom in the filters while the
parameters to select increase by 2 per added layer. One can increase the versatility of

A
B

C
D

A’
B’

C’
D’

A”
B”

C”
D”

the filters by choosing the wiring function h(λ) differently between different layers.
All of these lead us to a complicated function analysis to discover the full potential
of the filters in duplicated graphs, which we leave as future work.

As a final remark, we would like to stress that all the methods proposed on Laplacian-
based numerical algebra can be adapted for symmetric diagonally dominant (SDD)
matrices, which is a larger class of matrices than the graph Laplacian. The trick
by [Gre96] allows us to transform the linear systems with SDD matrices into larger
linear systems with graph Laplacian. Using this connection, one can replace L
with an SDD matrix in GTR, and yet the solution can still be approximated via the
RSF estimators. A similar adaptation is already given in [BTGAA19] for the trace
estimation problem. Given this extension, one might hope to extend larger classes of
matrices than SDD matrices. In this vein, a promising work [Ökt05] gives a random
walk-based solution to solve linear systems in the form of Ax = b where A is only
constrained to be an entry-wise real matrix. Here, an interesting perspective would
be replacing LERWs, and so RSFs, in the place of simple random walks for solving
Ax = b. So far, this adaptation is not obvious to our eyes, but we find investigating
it promising direction to extend the scope of our methods further.
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Epilogue

At first sight, this thesis’s main achievements can be considered the RSF-based
algorithms for several graph-based problems. Especially, the forest-based algorithms
for trace estimation and effective resistances show ensuring performance when
compared to existing algorithms. Similarly, the estimators for GTR and interpolation
are shown to be useful when one does not need to compute the solution at very high
accuracy. These methods are very easy to implement and flexible for parallelization
or distributed implementations. In the bigger picture, in this thesis, we reconsider
RSFs as tools to sample a small portion of the graph and solve the problem at hand
on this small portion to avoid heavy computations. Compared to the existing set
of tools for SDD matrices [Vis+13; ST04] and DPP-based approaches [DM21], the
RSF-based tools bring a brand new and elegant perspective to the literature.

Up to our work, a similar perspective is usually presented with simple random walks
by emphasizing the connections between the Markov chains and the graph-related
algebra [BOP19]. In this context, for example, the works by [Wu16; WLSWC12]
provide a random-walk insight to several practical machine learning algorithms
solving GTR, interpolation or clustering. Here, taking a step forward from random
walks to loop-erased random walks carries us to the prosperous realm of DPPs
and RSFs. In turn, we give practical algorithms to solve very central problems. In
addition, we observe that the direction we take has inspired recent research on
randomized graph-related algebra. For example, in their recent work [FB22], the
authors look at the problems of graph sparsification and solving Laplacian-based
linear systems with multi-type spanning forests, which are certain types of DPPs and
closely related to RSFs. In the future, we believe that RSFs and other types of DPPs
will have more impact on applications of SDD-based linear algebra and hopefully
extend to the other classes of matrices.
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Resumé Substantiel

Depuis leur première apparition pour modeliser les ponts de Königsberg, les graphes,
c’est-à-dire un ensemble de sommets et d’arêtes, ont été les objets de modélisation et
de résolution de nombreux problèmes en physique, chimie, biologie, informatique,
sciences sociales et bien d’autres encore. Ils sont si ubiquitaires car ils sont les
modèles naturels à utiliser lorsque les données représentent des relations mutuelles
entre des éléments individuels. Aujourd’hui, le traitement des données structurées
en graphes est l’une des principales questions de recherche en traitement du signal
et en apprentissage automatique. De nombreuses recherches se concentrent sur
l’exploitation de la structure des graphes pour accomplir des tâches avancées, comme
la gestion et l’analyse d’Internet (un réseau informatique colossal), la compréhension
du cerveau humain [FKL19], la découverte de médicaments [JWHCLWSCWH21],
l’analyse des réseaux sociaux [OR02] ou la prévision/planification du trafic à grande
échelle [HLDNC17]. D’autres exemples apparaissent dans le traitement du lan-
gage naturel [NMR15], la finance [MP20], les réseaux alimentaires [DWM04],
les réseaux électriques [PA13] et bien d’autres encore. Dans bon nombre de ces
exemples et d’autres, les graphes de la vie réelle sont accompagnés de certaines
caractéristiques/signaux, également appelés signaux sur graphe, sur l’ensemble des
sommets. En voici quelques exemples :

• Réseaux de transport [HLDN19] : Les réseaux routiers en sont un exemple
frappant. Dans une configuration typique, chaque emplacement correspond à
un nœud, et deux nœuds sont reliés par une arête lorsqu’une route les relie.
Les signaux sur ces réseaux sont généralement des caractéristiques du trafic,
telles que la vitesse ou le volume du trafic.

• Réseaux sociaux [VMS21] : Dans de nombreuses études sociales, outre les
informations individuelles sur les sujets, la structure de leurs interactions est
également d’une importance capitale. Les réseaux de médias sociaux tels que
Facebook et Twitter sont probablement les exemples les plus connus. Dans
ces cas, chaque utilisateur est considéré comme un nœud et deux nœuds
sont connectés s’il existe une interaction entre les utilisateurs correspondants,
comme des amis sur Facebook ou des followers sur Twitter. Compte tenu de
cette structure de graphe/réseau, toute caractéristique d’un utilisateur, telle
que ses goûts, peut être analysée comme un signal de graphe.
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(a) Données de trafic recueillies par
un réseau de capteurs à Greno-
ble [WMOKBB]

(b) Réseau d’amitié Twitter des auteurs des
tweets que l’utilisateur @PilavciYigit a
aimé jusqu’au 29/06/2022.

(c) Une carte partielle d’Internet (d) Réseau de capteurs de température sur
la Bretagne/France [PV17]. La couleur
rouge correspond à des températures
moyennes plus élevées.

(e) Connectivité du cerveau humain [HBM-
BRV17]

(f) Gene regulatory net-
work [MKGS14]

Fig. 5.1.: Exemples de graphes dans la vie réelle
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• Réseaux de température [PV17] : Un réseau de température est un réseau
de capteurs de température sur une région dans laquelle chaque capteur est
un nœud. Ici, les arêtes peuvent être établies selon différents critères. La
pratique courante est de construire le graphe des plus proches voisins à partir
des proximités des capteurs. Le signal, dans ce cas, est naturellement les
mesures de température recueillies par les capteurs.

• Réseaux neurologiques [HBMBRV17] : Compte tenu des nombreuses questions
restées sans réponse, l’analyse du cerveau est un sujet passionnant. L’étude
basée sur les graphes, en fait, donne une façon naturelle d’analyser les signaux
du cerveau. Dans ce type d’analyse, on considère souvent les différentes
régions du cerveau comme des nœuds et les arêtes sont établies en fonction
de leur proximité structurelle ou de propriétés fonctionnelles telles que la
corrélation dans leurs activités. L’analyse des signaux neurologiques sur un tel
réseau permet de déchiffrer des informations intéressantes sur le cerveau.

• Autres réseaux biologiques [GDJSRLHVRT+21; CPFSC21; YB20] : Le cerveau
n’est pas seulement le sujet biologique de l’analyse signal sur graphes. Dans
la littérature, nous trouvons de nombreuses études liées à la découverte
de médicaments, à l’analyse des structures protéiques ou des interactions
génétiques.

Compte tenu du grand volume et de la diversité de ces ensembles de données,
le développement d’outils appropriés pour les traiter et les analyser est devenu
problématique. En fait, la recherche en apprentissage automatique et en traite-
ment du signal pour les graphes et les signaux de graphes a émergé au cours des
dernières décennies [OFKMV18; RBTGV19]. À leur tour, ces outils ont été util-
isés pour résoudre des problèmes de la vie réelle allant de la détection de fausses
nouvelles dans les médias sociaux [MFEMB19] à l’analyse de la propagation pour
COVID-19 [PNV21], du décodage des signaux du cerveau [OTLFPG22] aux prévi-
sions météorologiques [Kei22], etc. Dans la plupart de ces outils et méthodes,
les représentations matricielles des graphes, notamment le laplacien des graphes,
revêtent une importance significative.

Laplacien de Graphe De nombreux outils d’analyse extraient des informations desUn graphe path

Son Laplacian L 1 −1 0
−1 2 −1
0 −1 1


représentations matricielles des graphes, en particulier du Laplacien de graphe. Le
laplacien est une matrice carrée symétrique de la taille du nombre de sommets. Il
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peut être considéré comme l’opérateur laplacien discret sur les graphes lorsqu’il est
appliqué à une fonction sur les sommets :

(Lf)i =
∑

j∈N (i)
(f(i)− f(j)),

où N (i) désigne les nœuds qui partagent un bord avec le nœud i (la définition
formelle se trouve section 2.1.1). Le laplacien est une représentation matricielle
simple mais utile des graphes. L’analyse algébrique le relie à de nombreuses pro-
priétés utiles des graphes. Par exemple, de nombreuses tâches dans l’analyse de
la connectivité du graphe peuvent être accomplies en observant la décomposition
de la matrice du Laplacien du graphe. En regardant simplement la multiplicité des
valeurs propres nulles, on peut compter le nombre de composantes connectées. De
plus, la deuxième plus petite valeur propre, également appelée écart spectral, donne
une mesure de la connectivité du graphe, qui est principalement utilisée dans les
applications de stabilité et de robustesse des réseaux dynamiques. De même, le
vecteur propre correspondant, également connu sous le nom de vecteur de Fiedler,
donne la plus petite partition du graphe, celle qui laisse le plus petit nombre d’arêtes
entre les parties. Le dessin spectral de graphes est un autre problème qui utilise la
décomposition des vecteurs propres du laplacien. Dans ce problème, on cherche
un dessin (une correspondance des sommets aux coordonnées euclidiennes) d’un
graphe qui minimise la distance entre les sommets qui sont proches les uns des
autres dans le graphe. Il s’avère que certains vecteurs propres du Laplacien sont
les solutions analytiques de ce problème. Plus proche des thèmes principaux de
cette thèse, nous trouvons un lien intéressant entre les valeurs propres de L et
l’énumération d’un certain type de sous-graphes. En particulier, le célèbre théorème

Un arbre cou-
vrant. Ses arêtes
sont indiquées
en rouge, et les
lignes pointil-
lées indiquent
les arêtes du
graphe.

de l’arbre matriciel de Kirchoff stipule que le produit des valeurs propres non nulles
de L est égal au nombre de tous les arbres couvrants, i.e. sous-graphes connectés
qui ne contiennent pas de cycles, sur un graphe.

En dehors de ces exemples, le laplacien joue un rôle important dans l’analyse des
réseaux de résistances électriques. Dans ces réseaux, nous modélisons chaque résis-
tance par une arête où le poids de l’arête représente la conductance de la résistance,
et chaque nœud correspond à ses points de connexion. Ces modèles sont largement
utilisés dans la théorie des circuits afin de calculer les courants circulant à travers
les résistances/arêtes ou les tensions induites aux nœuds lorsqu’une différence de
potentiel fixe (tension) est appliquée entre deux nœuds (ou plus). Étonnamment,
ces calculs se résument à la résolution de systèmes linéaires impliquant le laplacien
du graphe (voir le chapitre 4).
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Au cours des dernières décennies, des exemples encore plus nombreux sont apparus
dans le traitement du signal et l’apprentissage automatique impliquant des graphes.

Laplacien dans le traitement du signal des graphes. Le GSP est le sous-domaine
du traitement du signal qui traite des signaux définis sur les sommets du graphe.
Au cours de la dernière décennie, de nombreux outils classiques de traitement
du signal ont été adaptés afin de traiter de tels signaux. Citons par exemple le
filtrage [SVF11; SNFOV13], l’échantillonnage [TAB17; PTGV18], l’opération de
translation [SNFOV13], l’analyse en ondelettes [HVG11; NO12; ACGM20] ou le
principe d’incertitude [TBD16]. Dans beaucoup de ces adaptations, la transformation
de Fourier de graphe joue un rôle important. Par analogie, elle nous permet de
représenter les signaux du graphe dans le domaine de fréquence du graphe. À son
tour, on peut définir des schémas de traduction et de filtrage des graphes en utilisant
un analogue du célèbre théorème de convolution [OBS01]. Cependant, en raison de
l’irrégularité du domaine du signal, la définition de la transformée de Fourier n’est
pas unique. Une définition populaire de la PSG repose sur le fait que les fonctions
propres de l’opérateur Laplacien sont les fonctions de base de la transformée de
Fourier. En s’appuyant sur ce principe, les auteurs de l’article [SNFOV13] suggèrent
d’utiliser les vecteurs propres du laplacien du graphe comme base de Fourier et
les valeurs propres comme fréquences du graphe. De cette façon, des valeurs
propres plus élevées correspondent à une composante de fréquence plus élevée dans
l’analyse de Fourier. En projetant le signal sur ces bases, on peut calculer la réponse
en fréquence du graphique du signal à chaque composante.

Laplacien en l’apprentissage automatique. Une des premières utilisations du
laplacien se produit dans l’apprentissage semi-supervisé sur des graphes [Zhu05;
AMGS12]. Dans ce problème, on nous donne quelques étiquettes sur les sommets
et le but est de déduire les étiquettes des autres sommets en utilisant les étiquettes
données et le graphe sous-jacent. Une solution de base donnée par [Zhu05] sug-
gère d’utiliser le Laplacien du graphe pour formuler ce problème. Leur principale
hypothèse est que la fonction d’étiquetage f est fixée à un sous-ensemble V ⊆ V
et lisse sur le reste U = V \ V , i.e. f ne varie pas trop à travers les bords. Pour
deux classes d’étiquettes (pour simplifier), cette formulation cherche une fonction
de classification f qui n’est connue que sur un petit ensemble de sommets V ⊆ V.
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Désignons les étiquettes connues par y ∈ R|V |, puis, [Zhu05] suggérons de résoudre
le problème contraint suivant :

f? = argmin
f

∑
i∈U

∑
j∼i

(f(i)− f(j))2

s. t. ∀i ∈ V, f(i) = yi,

En fait, le terme minimisé peut être écrit en termes de laplacien du graphe comme
f>LU f où f = [f(i)]i∈U . De plus, la solution sous forme fermée implique ce qui suit
dans le Laplacien du graphe :

f? = (LU )−1LU |V f .

Plus tard, cette formulation est considérée dans un cadre non contraint et généralisée
dans [AMGS12]. Dans ces formes également, la solution prend la forme de l’inverse
matriciel du laplacien du graphe. Parmi les exemples plus récents en apprentissage
automatique qui utilisent largement le laplacien, citons le clustering spectral [Von07;
TPGV16], l’intégration de graphes [Xu21], la sparsification [SS11] et l’apprentissage
profond sur les graphes [WPCLZP20]. Dans toutes ces applications et bien d’autres,
l’analyse de L est de la plus haute importance.

Algèbre numérique basée sur le Laplacien. Comme indiqué ci-dessus, le nombre
d’applications impliquant le Laplacien des graphes est grand. Dans beaucoup de ces
applications, la solution nécessite le calcul d’une décomposition inverse (régularisée
ou pseudo) ou d’une décomposition de l’indice du Laplacien. Cependant, le calcul
direct de ces quantités ne s’adapte pas bien à la taille du graphe et devient même
impossible pour les très grands graphes. En conséquence, de nombreux chercheurs
se sont attachés à développer des outils d’algèbre numérique spécifiques au laplacien.
Les plus importants sont étroitement liés à la théorie spectrale des graphes [Spi12]
et à la résolution de systèmes linéaires laplaciens [Vis+13]. Ces études donnent une
riche collection d’outils algébriques qui évitent le calcul direct coûteux et, à la place,
approchent la solution requise dans certaines plages d’erreur. Ce faisant, elles tirent
parti de certaines propriétés communes du laplacien des graphes, telles que leurs
propriétés algébriques, leurs liens étroits avec la théorie des graphes ou la rareté
des graphes réels. Par rapport à ces travaux, nous prenons dans cette thèse une voie
alternative en utilisant la randomisation afin de développer des outils algébriques
spécifiques au Laplacien. Nous approchons la solution requise dans certains de ces
problèmes en exploitant les riches connexions théoriques entre les Laplaciens et un
processus aléatoire sur les graphes.
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Algèbre Linéaire Aléatoire (ALA). En bref, l’ALA est un ensemble d’outils qui
évitent le calcul direct d’une opération algébrique par le biais de la randomisation. Le
principal avantage de ces outils est qu’ils permettent d’approximer des opérations très
coûteuses, telles que l’inversion de matrice et la décomposition de la valeur singulière,
de manière très économique en prenant uniquement des échantillons aléatoires de
la matrice d’entrée. Plus de détails et d’exemples peuvent être trouvés dans [DM16].
Plus proche des thèmes de cette thèse, [DM21] montrent que les processus ponctuel
déterminantaux (PPD), i.e. un processus ponctuel aléatoires avec de nombreuses
propriétés tractables, peuvent être facilement adaptés comme algorithmes ALA
afin de résoudre des systèmes linéaires impliquant un large ensemble de matrices
d’entrée couvrant le Laplacien du graphe. Inspirés par ces exemples et bien d’autres,
nous nous concentrons sur un processus ponctuel déterminantal particulier qui nous
permet de développer des outils randomisés pour l’algèbre numérique basée sur le
Laplacien.

Les Forêts Couvrantes Aléatoire (FCA) Une forêt dans un graphe est un sous-
graphe qui ne contient aucun cycle. Elle est dite couvrante si elle contient tous
les sommets du graphe. Enfin, les forêts couvrantes aléatoires sont les proces-

Une forêt
d’envergure avec
trois arbres. Les
arêtes de la forêt
sont en rouge,
et le graphe
est représenté
par des lignes
pointillées.

sus aléatoires dans lesquels nous choisissons une forêt étendue au hasard sur un
graphe donné. On peut imaginer une infinité d’options pour la distribution d’un
tel processus. Dans cette thèse, nous nous concentrons sur la distribution intro-
duite dans [ACGM18]. Dans cette distribution, la probabilité d’avoir une forêt
couvrante est principalement régulée par les poids de ses arêtes et le nombre de ses
composants connectés (arbres). Nous nous limitons à cette distribution pour deux
raisons principales :

• Les FCAs échantillonnés à partir de cette distribution ont des connexions
théoriques riches avec le Laplacien des graphes via certains PPDs,

• Il existe un algorithme efficace pour échantillonner à partir de cette distribu-
tion, appelé algorithme de Wilson.

Grâce à ces faits, nous savons que les échantillons de FCAs peuvent être obtenus
de manière peu coûteuse, et que leurs propriétés algébriques sont étroitement liées
aux propriétés algébriques du graphe original. L’objectif principal de cette thèse est
d’exploiter ces faits afin de développer des algorithmes ALA pour l’algèbre numérique
basée sur le Laplacien.

Les principales contributions de cette thèse peuvent être énumérées comme suit :

• Nous mettons en lumière les riches connexions des FCAs avec les processus
ponctuels déterminant aux et le Laplacien des graphes ; Nous passons en
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revue l’élégante théorie et les propriétés utiles des FCA en tant que PPD.
Tout au long de notre tour, alors que pour certaines des propriétés, nous
reproduisons les preuves existantes, pour d’autres, nous donnons surtout des
preuves algébriques qui sont plus accessibles pour les chercheurs de différents
domaines (Voir Théorèmes 2.4.4, 2.4.5).

• En retour, nous développons et analysons des algorithmes ALA basés sur
les FCAs pour approximer les solutions d’une grande variété de problèmes
impliquant le Laplacien des graphes. Ces problèmes sont :

– Régularisation et interpolation de Tikhonov pour les signaux de
graphes : Les problèmes de débruitage, d’élimination des parties bruyantes
d’un signal et de complétion des parties manquantes d’un signal sont des
problèmes de longue date en traitement du signal. Nous donnons d’abord
un cadre d’optimisation unifié pour ces problèmes pour les signaux de
graphes i.e. signaux définis sur des sommets. Ensuite, nous donnons de
nouveaux algorithmes aléatoires qui approchent la solution de ce cadre.

– Estimation de la trace de l’inverse régularisé des matrices symétriques
diagonalement dominantes (SDD) : La trace (somme des entrées di-
agonales d’une matrice) est une opération centrale en algèbre linéaire.
Cependant, le calcul de la trace d’une matrice est un problème difficile
lorsque la matrice d’entrée n’est pas directement accessible eg multiplica-
tion de grandes matrices ou inverse d’une grande matrice. Nous donnons
de nouveaux algorithmes basés sur les FCA pour estimer l’inverse régular-
isé des matrices SDD (une classe de matrices qui contiennent le Laplacien
du graphe). En retour, nos algorithmes sont au moins comparables, et ils
surpassent généralement les méthodes de l’état de l’art.

– Estimation des résistances effectives dans les réseaux électriques :
La résistance effective est une métrique qui prend sa source dans les
réseaux de résistances électriques1 et ils sont utilisés pour mesurer la
similarité d’une paire de nœuds. Ils jouent un rôle central dans de
nombreuses applications liées aux graphes, telles que la sparsification, le
regroupement ou l’apprentissage des graphes. Cependant, le calcul de
cette quantité utile ne s’adapte pas bien à l’augmentation de la taille des
graphes, car il faut inverser un laplacien de graphe. Pour éviter ce calcul
coûteux, nous donnons des algorithmes basés sur le FCA pour estimer

1La représentation graphique d’un réseau de résistances électriques prend chaque bord comme une
résistance avec une conductance unitaire. La conductance est égale au poids de l’arête pour les
graphes pondérés.
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les résistances effectives. Les méthodes proposées sont comparables et
même meilleures que les algorithmes de l’état de l’art lorsque le nombre
de résistances effectives souhaitées est faible.

– Estimation de divers filtres graphiques: Cet aspect de notre travail
établit des liens intéressants entre les FCAs et le filtrage sur graphes i.e. spec-
tral signal filtering for graph signals [TGB18]. Le filtrage sur graphes
est un outil essentiel pour traiter ce type de signaux et a été utilisé dans
diverses applications. Pourtant, les calculs associés nécessitent souvent
de diagonaliser L, ce qui est coûteux. Dans ce travail, nous donnons
un ensemble de filtres graphiques qui peuvent être approximés via des
estimateurs basés sur le FCAs en évitant la diagonalisation de L. Ces fil-
tres couvrent ou peuvent imiter en optimisant quelques hyperparamètres
certains des filtres fréquemment utilisés, tels que le filtre passe-bas idéal.

• Nous fournissons une analyse biais-variance des algorithmes proposés afin
d’énoncer leurs performances théoriques.

• Nous illustrons ces algorithmes dans des applications et des ensembles de
données réels tout en comparant ces algorithmes avec les algorithmes existants.

La structure principale de la thèse est la suivante ; nous commençons par donner les
outils techniques nécessaires dans le Chapitre 2 sur la théorie des graphes, l’algèbre
linéaire aléatoire et les forêts couvrantes aléatoire. Ensuite, au Chapitre 3, nous
introduisons les méthodes basées sur les FCAs pour résoudre la régularisation de
Tikhonov sur les graphes. Nous comparons ces méthodes aux méthodes existantes
et montrons leurs utilisations dans d’autres problèmes liés aux graphes tout en
illustrant des applications réelles. Dans le Chapitre 4, nous étendons la gamme
des méthodes basées sur les FCAs à un nouvel ensemble de problèmes, notamment
l’estimation de la trace de l’inverse régularisée des matrices SDD, les résistances
effectives et certains filtres de graphes. Enfin, nous terminons dans le chapitre 5 avec
une conclusion générale, une discussion sur les questions ouvertes et les travaux
futurs.

Les publications évaluées par les pairs associées à cette thèse peuvent être trouvées
dans ce qui suit :

• Yusuf Yiğit Pilavcı et al. “Variance Reduction for Inverse Trace Estimation via
Random Spanning Forests”. In: GRETSI 2022 - XXVIIIème Colloque Francophone
de Traitement du Signal et des Images. Nancy, France, Sept. 2022
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• Yusuf Yiğit Pilavcı et al. “Variance reduction in stochastic methods for large-
scale regularised least-squares problems”. In: arXiv preprint arXiv:2110.07894
(2021)

• Yusuf Yiğit Pilavcı et al. “Graph tikhonov regularization and interpolation via
random spanning forests”. In: IEEE transactions on Signal and Information
Processing over Networks 7 (2021), pp. 359–374

• Yusuf Yiğit Pilavcı et al. “Smoothing graph signals via random spanning forests”.
In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2020, pp. 5630–5634

De plus, certains matériaux sont présentés dans ma thèse de maîtrise [PIL19].
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Appendix A
A.1 Upper-bound on the Complexity of Wilson’s

algorithm for Forests

Here we give an upper-bound on the trace tr((Q + L)−1(Q + D)) which gives the
expected number of steps taken by Wilson’s algorithm. First, we write this trace
explicitly as follows:

tr((Q + L)−1(Q + D)) =
n∑
i=1

(qi + di)(Q + L)−1
i,i =

n∑
i=1

(qi + di)
Ki,i

qi
.

Then, by Theorem 2.4.4, we know that Ki,i = P(i ∈ ρ(ΦQ)) ≤ 1. By plugging this
upper bound on Ki,i’s, one obtains:

tr((Q + L)−1(Q + D)) ≤
n∑
i=1

qi + di
qi

= n+
n∑
i=1

di
qi
≤ n+ 2m

qmin
.

A.2 Proof of Proposition 2.1.2

The proof of this theorem is two-fold:

• In the first part, we show |det BS|−m| =
[ ∏

(i,j)∈S
w(i, j)

]1/2

, ∀m ∈ V in case

that S forms a spanning tree.

• In the second, we prove that |det BS|−m| = 0 if S forms a subgraph includes a
cycle.

The first part is proven by induction in which we will show that the statement holds
for a base case and an inductive step. We consider two nodes connected with an edge
e as the base case. The statement is true for the base case since |det Be|−1| = w(e)
where m = 1 without loss of generality. This leaves us to examine the inductive
step. At each inductive step, we add a node and connect it to one of the others
(See Fig. A.1). Note that this inductive step can build any possible tree and it only
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constructs trees. Without loss of generality, each newly added node is connected to
the one added in the previous step. We denote the edge set at k-step as Ek. To show
that the statement is true for an inductive step, at first, we assume that it holds for
k-th step. Under this assumption, proving that it also holds for k+ 1-th step confirms
that it holds for the induction step and finishes the first part.

1

2

3 4

BE3|−1 =


√
w(1, 2) 0 0

−
√
w(2, 3)

√
w(2, 3) 0

0 −
√
w(3, 4)

√
w(3, 4)


Fig. A.1.: A weighted graph and its reduced edge incidence matrix

At k + 1-th step, the reduced edge incidence matrix BEk+1|−1 reads:

BEk+1|−1 =


BEk|−1

0
0
...
0

0 . . . −
√
w(k + 1, k + 2)

√
w(k + 1, k + 2)


(A.1)

By applying the block matrix determinant formula, we have:

|det(BEk+1|−1)| =
√
w(k + 1, k + 2)|det BEk|−1| (A.2)

Given |det BEk|−1| =
[ ∏

(i,j)∈Ek
w(i, j)

]1/2

, one easily obtains:

| det BEk+1|−1| =
√
w(k + 1, k + 2)

 ∏
(i,j)∈Ek

w(i, j)

1/2

=

 ∏
(i,j)∈Ek+1

w(i, j)

1/2

which proves the statement for the induction step and completes the first part.
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1

2

3 4

B{E3|−1} =


−w(1, 2) 0 0
w(2, 1) −w(2, 1) 0

0 w(3, 1) 0


Fig. A.2.: A cycle and its reduced edge incidence matrix

In the second part, we examine the case that S includes a cycle. Imagine that
we build a circuit in a similar fashion. Then, whenever we construct a cycle, the
corresponding reduced edge incidence matrix contains a singular principal block
(See Fig. A.2). Thus, the resultant determinant |det BEk|−1| is equal to zero.

A.3 Intermediate steps in the proof of Theorem 2.4.4

Let us rewrite as S = (α−1I + A)−1 where A = Q − Q1/2B>(BB> + α−1I)−1BQ1/2.
Then, the matrix M reads:

M = lim
α→∞

A(A + α−1I)−1.

In order to prove the equality in Eq. (2.22), we re-arrange the terms in the matrix A
by using some matrix inverse identities. The first identity we apply is (X+YY>)−1Y =
X−1Y(I + Y>X−1Y)−1 where X is a invertible square matrix. By plugging X = α−1I
and Y = B, we write A as follows:

A = Q− αQ1/2B>B(I + αB>B)−1Q1/2 = Q1/2(I− L(α−1I + L)−1)Q1/2.

Noticing I− L(α−1I + L)−1 = (I + αL)−1 even more simplifies:

A = Q1/2(I + αL)−1Q1/2.

Let us go back to the original limit. Another matrix trick allows to write:

M = lim
α→∞

I− (I + αA)−1.

Plugging A as found above gives:

M = lim
α→∞

I− (I + Q1/2(α−1I + L)−1Q1/2)−1.
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The final manipulation we do is due to the identity (I + XY)−1 = I− X(I + YX)−1Y.
We re-write the final matrix inverse by setting X = Q1/2 and Y = (α−1I + L)−1Q1/2.
By doing so, we finish this proof as follows:

M = lim
α→∞

I− I + Q1/2(I + (α−1I + L)−1Q)−1(α−1I + L)−1Q1/2.

= lim
α→∞

Q1/2(α−1I + L + Q)−1Q1/2 = Q1/2(L + Q)−1Q1/2.

A.4 Proof of Lemma A.4.1

Lemma A.4.1. Given the extended graph G′ = (V ′, E ′, w), for all edge subsets
S ⊆ E ′ with |S| = |V ′| − 2 = n− 1, the following inequality holds:

(−1)i+j det B′{S|−i,−Γ} det B′{S|−j,−Γ} ≥ 0 ∀i, j ∈ V

.

Proof. Consider the columns of matrix B′{S|−i,−Γ} = (b1| . . . |bi−1|bi+1| . . . |bj | . . . |b|V|)
where i < j assumed without loss of generality. Then, with a certain column
permutation, one can find:

perm(B′{S|−i,−Γ}) = PiB′{S|−i,−Γ} =
[
bj X

]
where Pi is the associated permutation matrix. A similar can be done for
B′{S|−j,−Γ} as perm(B′{S|−j,−Γ}) = PjB′{S|−j,−Γ} = [bi X]. Note that the deter-
minants of these permutation matrices read det Pi = (−1)j−1 and det Pj = (−1)i

for i < j. Then, one can rewrite the initial determinant product as:

det B′{S|−i,−Γ} det B′{S|−j,−Γ} = (−1)j−1 det perm(B′{S|−i,−Γ})(−1)i det perm(B′{S|−j,−Γ})

= (−1)i+j−1 det
[
bj X

]T [
bi X

]
= (−1)i+j−1 det

[
bTj bi bTj X
XTbi XTX

]
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Due to this, showing det
[
bTj bi bTj X
XTbi XTX

]
≤ 0 implies that the sign of the overall

product is (−1)i+j and finishes the proof:

det
[
bTj bi bTj X
XTbi XTX

]
= det XTX det(bTj bi − bTj X(XTX)−1XTbi)

= det XTX
[
bTj bi − bTj X(XTX)−1XTbi

]
(Determinant of a scalar)

(A.3)

XTX is a semi-positive definite matrix, thus det XTX ≥ 0. By definition, the
vector product bTk bl writes ∀k, l ∈ V:

bTk bl =


∑
n∈V w(k,m) if, k = l

−w(k, l) if, k 6= l and (k, l) ∈ E ∪ Γ

0 otherwise

Due to this, bTj bi and all entries of both bTj X and XTbi are non-positive. More-
over, XTX writes a M-matrix whose inverse is entry-wise non-negative. Summing
these up gives bTj bi ≤ 0 , (bTj X(XTX)−1XTbi) ≥ 0 ∀i, j ∈ V and

det
[
bTj bi bTj X
XTbi XTX

]
= det XTX

[
bTj bi − bTj X(XTX)−1XTbi

]
≤ 0

thus,

(−1)i+j det B′{S|−i,−Γ} det B′{S|−j,−Γ} = (−1)2i+2j−1+1
∣∣∣∣∣det

[
bTj bi bTj X
XTbi XTX

]∣∣∣∣∣
=
∣∣∣∣∣det

[
bTj bi bTj X
XTbi XTX

]∣∣∣∣∣ ≥ 0

A.5 Upper bounds on the terms in Eq. (4.6)

Upper bound on
∑
i,j∈V Var(X̄i,j). Let us start by plugging the definition of the

variance:

∑
i,j∈V

Var(X̄i,j) =
∑
i,j∈V

E
[
I(rΦq(i) 6= rΦq(j), |ρ(Φq)| = 2)

|Vt(Φq ,i)|2|Vt(Φq ,j)|2

]
− c2R2

i,j .
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Then rearranging the summation yields:

∑
i,j∈V

Var(X̄i,j) = E

∑
i,j∈V

I(rΦq(i) 6= rΦq(j), |ρ(Φq)| = 2)
|Vt(Φq ,i)|2|Vt(Φq ,j)|2

− ∑
i,j∈V

c2R2
i,j

Notice that, the sum
∑
i,j∈V

I(rΦq (i)6=rΦq (j),|ρ(Φq)|=2)
|Vt(Φq,i)|2|Vt(Φq,j)|2

is only non-zero over the span-
ning forests with exactly two trees. Moreover, given an arbitrary forest φ with two
roots v1, v2, it always sums up to:

∑
i,j∈V

I(rφ(i) 6= rφ(j))
|Vt(φ,v1)|2|Vt(φ,v2)|2

= 2
|Vt(φ,v1)||Vt(φ,v2)| .

Recall that |Vt(φ,v1)| + |Vt(φ,v2)| = n for any graphs and both terms are positive
integers. Thus, the minimum of |Vt(φ,v1)||Vt(φ,v2)| equals to n − 1. As a result, we
obtain the following upper-bound:

∑
i,j∈V

Var(X̄i,j) ≤
2

n− 1 − c
2 ∑
i,j∈V

R2
i,j .

Upper bound on −
∑
i,j∈V Ri,j Cov(X̄i,j, C). Notice that both X̄i,j and C are non-

negative random variables. Then the following inequality holds:

−
∑
i,j∈V

Ri,j Cov(X̄i,j, C) = −
∑
i,j∈V

Ri,j(E[CX̄i,j ]− E[C]E[X̄i,j ])

≤
∑
i,j∈V

Ri,jE[C]E[X̄i,j ] = c2 ∑
i,j∈V

R2
i,j .

Upper bound on
∑
i,j∈V R2

i,j Var(C). We again plug the definition of the variance

and it yields:∑
i,j∈V

R2
i,j Var(C) =

∑
i,j∈V

R2
i,j

[
E[C2] − c2

]

=
∑
i,j∈V

R2
i,j

 1
(n− 1)2E[

∑
(x,y)∈E

∑
(a,b)∈E

X̄x,y, X̄a,b] − c2

 . (A.4)

By developing on the term within the expectation, one obtains:

∑
(x,y)∈E

∑
(i,j)∈E

X̄x,y, X̄a,b =
∑

(x,y)∈E

∑
(a,b)∈E

I(rΦq(a) 6= rΦq(b), rΦq(x) 6= rΦq(y)|ρ(Φq)| = 2)
|Vt(Φq ,a)||Vt(Φq ,b)||Vt(Φq ,x)||Vt(Φq ,y)|

.
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The condition on the numerator is satisfied only if Φq has exactly two roots and the
pairs (a, b) and (x, y) must be in different trees. Then for an arbitrary forest φ with
exactly two trees rooted in v1 and v2, this sum boils down to:

∑
(x,y)∈E

∑
(a,b)∈E

X̄x,yX̄a,b =
∑

(x,y)∈E

∑
(a,b)∈E

I(rφ(a) 6= rφ(b), rφ(x) 6= rφ(y))
|Vt(φ,v1)|2|Vt(φ,v2)|2

.

Assuming the condition is verified by all edge pairs1, one reaches to the maximum
value of this sum as follows:

∑
(x,y)∈E

∑
(i,j)∈E

X̄x,yX̄a,b ≤
m2

|Vt(φ,v1)|2|Vt(φ,v2)|2
≤ m2

(n− 1)2 .

Applying this upper bound on the expectation term in Eq. (A.4) concludes this
section.

1In fact, this is only possible on a graph with two nodes and one edge. Otherwise, there must be at
least one edge that connects nodes with the same root.
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